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1 Introduction

A fundamental component of inter-temporal consumption-saving and portfolio allocation models

is a statistical model of the income process (see e.g. the discussion in Wang (2009)). Assumed to

evolve in continuous time, popular modeling choices are variants of Brownian motion processes.1

The principal obstacle to the empirical implementation and the eventual testing of a model’s

prediction, however, is the nature of the income data reported in the usual surveys: neither

is the income flow observable, nor is the income process sampled at specific time points; what

is reported in survey data is income data aggregated, by necessity, over time intervals. We

address this problem by considering a statistical model of a continuous-time earnings process,

and we propose methods to estimate its parameters from discretely sampled time-aggregated

data. The estimation approach suggested in this paper therefore bridges the gap between the

theoretical models and their empirical application. Moreover, we consider (Mincerian) classes of

income processes, which are a more general than common modeling choices, and show that the

estimated process describes well the US earnings distributions.

More specifically, we assume that the unobserved continuous-time earnings process is a non-

linearly transformed Ornstein-Uhlenbeck (OU) process. In the baseline model, the transforma-

tion is an exponentiation, in the generalized model it is an inverted Box-Cox transformation.

This process is sampled over possibly non-regular intervals, resulting for the baseline model in

an integrated exponentiated Ornstein-Uhlenbeck process (intexpOU) and for the general model

in an integrated inverted Box-Cox Ornstein-Uhlenbeck process (intinvBCOU). We characterize

both expOU and intexpOU processes in terms of distributions and moments. In particular, we

show that whereas the expOU process is Markov and lognormal, the intexpOU is neither. This

is an important finding since it demonstrates that wrongly assuming the observed integrated

process to have the same distributional properties as the unobservable underlying continuous-

time process would introduce a temporal aggregation bias.

We demonstrate how the parameters of the unobservable income process are estimable from

standard time-aggregated data by means of a GMM procedure. The merit of our approach is

illustrated using US PSID income data, and we show that the estimated model fits the data very

well.

This is the first paper, to the best of our knowledge, to consider the estimation of continuous-

time earnings processes from time-aggregated data. The common approach in the labor eco-

1E.g. simple geometric Brownian motion (e.g. Bodie et al. (1992), Koo (1998), or Bick et al. (2009)), Brownian

motion with drift (Henderson, 2005), or geometric Brownian motion with time-varying drift and depending on

other economic variables (Munk and Sørensen, 2009). Wang (2004, 2006, 2009) considers an Ornstein-Uhlenbeck

process.
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nomics literature is to estimate a discrete-time error component model on annual earnings data

(e.g. MaCurdy, 1982, Abowd and Card, 1989, Baker, 1997, Guvenen, 2009). Integrated diffu-

sion processes are thus new to this empirical setting, but have been considered in other fields.

We highlight the principal differences. In the statistics literature, Gloter (2001) considers an

integrated stationary Ornstein-Uhlenbeck process (intOU), which is shown to be Gaussian and

ARMA(1,1) with an exponentially decaying α-mixing coefficient. The likelihood is intractable

and he proposes a Whittle estimator for the OU parameters. However, his results do not apply

to our case since the non-linear transform (exponentiation in the baseline model) prior to inte-

gration leads to completely different distributional properties of intexpOU and intOU processes.2

Such intOU processes are considered particularly in finance, and estimated for settings in which

the sampling time interval, required to be regular, converges to zero (e.g. Ditlevsen and Sørensen

(2004), or Gloter (2006)). The leading application is stochastic volatility modeling in finance

(e.g. Barndorff-Nielsen and Sheppard (2001)). In contrast to this literature our empirical setting

does not allow to shrink the time interval to zero, nor do we require the time intervals to be

regular. Another strand of the finance literature deals with integrated continuous-time processes

in the context of Asian option pricing (e.g. Carr and Schröder (2004)). Finally, turning to the

consequences of temporal aggregation, such aggregation can, as in our case, lead to important

differences between the continuous and the integrated process. Referring to such differences as

time aggregation biases, these have been studied in a macro context in Harvey and Stock (1989)

and Christiano, Eichenbaum and Marshall (1991), who consider how time-aggregation alters the

results of tests of the permanent income hypothesis.

This paper is structured in the following way: In Section 2 we present the statistical model for

the income process. Section 3 derives the moments of the time-aggregated, observable process.

In Section 4 we suggest a more general non-linear transformation (Box Cox transformation)

for the income flow which permits the modeling of heavy tails. Section 5 sets out the GMM

estimation procedure. While the asymptotic properties of GMM are known to be attractive,

not much can be said about its small sample properties. Therefore, in Section 6, we conduct

simulation exercises and find that our estimation approach performs well even in relatively small

samples. Section 7 contains the empirical application in which we estimate the parameters of

the continuous-time model using annual panel data from the US PSID. The model turns out to

fit the data very well. Section 8 concludes. All proofs are collected in the Appendix.

2Other related work includes Bhattacharya, Thomann and Waymire (2001), who derive partial differential

equations for the distribution of integrals of geometric Brownian motions. This is a special case of the intexpOU

process if the mean reversion parameter of the OU process is absent. Comte, Genon-Catalot and Rozenholc (2009)

suggest a nonparametric estimation method for integrated diffusions.
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2 The Statistical Model for the Income Process

The log-income flow of an individual, denoted by {lnY (t) : t ≥ t0}, is assumed to follow a sto-
chastic process evolving in continuous time. t0 denotes the starting time of the process. We

impose a structure on this earnings process which follows conventional modeling, except that our

process evolves in continuous rather than discrete time. Specifically, we assume that the earnings

process decomposes additively into two independent parts. The error process is Gaussian and

denoted by {u (t) : t ≥ t0}, the model for the mean log-income flow is denoted by {ỹ (t) : t ≥ t0},
and we assume that

lnY (t) = ỹ (t) + u (t) . (1)

In Section 4 below we also consider more general Box-Cox transformations of the Y (t) process.

The model for {ỹ (t)} is standard in the sense of relating the mean log-income linearly to
observables such as measures of human capital. In our empirical application we postulate a

Mincerian model. For notational convenience later, we partition the relevant observables into

time-invariant and time-varying covariates

ỹ (t) = m+ Z>1 β + Z>2 (t) γ. (2)

We treat the regressors as exogenous and follow e.g. Abowd and Card (1989) in ignoring the

potential endogeneity of the human capital measure such as schooling which could arise from

unobserved ability. The intercept m, allowed to be individual-specific in order to accommodate

unobserved heterogeneity, is modelled as a random effect,

m = μ+ ε,

with ε having a zero-mean Gaussian distribution with variance σ2ε.

The Gaussian latent variable or error process {u (t)} is assumed to be a zero-mean Ornstein-
Uhlenbeck (OU) process, governed by the stochastic differential equation

du (t) = −ηu (t) dt+ σdW (t) , (3)

with solution

u (t) = u (t0) e
−ηt + σ

Z t

t0

eη(s−t)dW (s) . (4)

{W (t) : t ≥ t0} is the standard Wiener process, and η ∈ R and σ > 0 are the parameters of the

process.

The OU process is an attractive point of departure for two reasons. First, it is the continuous-

time counterpart of an autoregressive process in discrete time. Autoregressive processes are

commonly used for models of income dynamics in discrete time. Second, OU processes capture
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not only stable processes but also unit root processes and, if η < 0, even explosive processes. In

contrast to the common stability assumption, we do not impose any restrictions on the parameter

η.

The parameter σ determines the strength of the stochastic income component, and equals

the diffusion coefficient of the process. −ηu (t) is the instantaneous mean of the OU process.

The start value of the OU process u (t0) is assumed to be stochastic with E (u (t0)) = 0 and

V ar (u (t0)) = s20. Mean and covariances are given by E {u (t)} = 0 and, for η 6= 0,3

σs,t ≡ Cov (u (s) , u (t)) =
σ2

2η
e−η|t−s| + ae−η(t+s) (5)

with

a = s20 −
σ2

2η
(6)

for notational simplicity. Finally we note that the OU process is weakly stationary if a = 0,

i.e. s20 = σ2η−1/2, and strongly stationary if u (t0) is in addition Gaussian. However, we do not

impose any stationarity assumption.

Exponentiating the process (1) yields the continuous-time income process {Y (t) : t ≥ t0},

Y (t) = exp (ỹ (t) + u (t)) ,

which is an exponentiated OU process (expOU).

A key assumption is that the econometrician cannot sample the process at specific points of

time. Instead, only the time-aggregated process is observable, i.e. the econometrician observes

the integrated process for non-overlapping time intervals [t0, t1], . . . , [tT−1, tT ]. Depending on the

specific application, these time intervals could be individual-specific if the data are spell data,

and common across individuals when the data are annual panel data. Below we refer to time

intervals that are common across individuals and of the same length ∆ as regular intervals. The

observable process is thus the integrated exponential Ornstein-Uhlenbeck (intexpOU) process

Sk =

Z tk

tk−1

Y (t) dt =

Z tk

tk−1

eỹ(t)eu(t)dt k = 1, . . . , T. (7)

For ease of reference, we collect the model parameters in the vector

θ = [η, σ, s0, μ, σε, β, γ]
>
. (8)

We proceed to characterize both the unobservable income process {Y (t)} and the observable
integrated process {Sk}.4 In particular, important distributional properties of {Y (t)} will not
be inherited by {Sk}.

3We exclude the unit root case for expositional and notation ease by assuming η 6= 0. However, all results can
be specialized for η → 0.

4We follow notational convention and denote a continuous-time stochastic process by A (t) and an aggregated

or discrete-time process by Bk.
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3 Characterizing the Time Aggregated Process

Proposition 1 The unobservable income process {Y (t)} is lognormal and Markov, with

E (Y (t)) = exp

µ
μ+ Z>1 β +

σ2ε
2
+

σ2

4η

¶
exp

µ
Z>2 (t) γ + a

e−2ηt

2

¶
, (9)

E (Y (s)Y (t)) = exp
¡
2
¡
μ+ Z>1 β + σ2ε

¢¢
× (10)

exp
¡£
Z>2 (s) + Z>2 (t)

¤
γ
¢
×

exp

µ
σ2

2η

h
1 + e−η|t−s|

i
+ ae−η(t+s) +

a

2

¡
e−2ηs + e−2ηt

¢¶
.

The integrated process does not inherit these distributional properties:

Lemma 2 The observable process {Sk : k = 1, . . . , T} is neither Markov nor lognormal.

We therefore consider the moments of the aggregated process, which follow from an applica-

tion of Fubini’s theorem.

Corollary 3 The moments of the observable process {Sk : k = 1, . . . , T} are given by

E(Snk ) = E

ÃÃZ tk

tk−1

Y (t) dt

!n!
(11)

= exp

µ
n
¡
μ+ Z>1 β

¢
+
1

2
n2σ2ε

¶
×Z tk

tk−1

. . .

Z tk

tk−1

exp
³X

Z>2 (si) γ
´

× exp

⎛⎝1
2

X
σsi,si +

XX
j>i

σsi,sj

⎞⎠ ds1 . . . dsn

where σs,t is given by (5) and n is an integer.

Lemma 4 Moments of Sk of all orders exists, and the distribution of Sk therefore cannot be

heavy-tailed.

Recall that a heavy-tailed distribution is one whose tail decays like a power function, i.e.

1 − F (x) = x−1/γL0 (x) for sufficiently large x, where L0 is a slowly varying function and

γ > 0. In Section 4, we therefore consider a generalized model which subsumes the intexpOU

and heavy-tailed processes as special cases.

Corollary 5 The mixed moments for intervals k and r are

E (SkSr) =

Z tk

tk−1

Z tr

tr−1

E (Y (s)Y (t)) dsdt (12)

with integrand given by (10).
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Without giving more structure to the covariate process, we cannot characterize the moments

any further. A special case arises when the covariate process is absent. We then can state

exact expressions for the first moment, and approximations for the covariances, which give some

insights into the behavior of the more general process. For expositional brevity we focus on

regular intervals of length ∆. In Appendix A we derive the following statements.5 The first

moment satisfies exactly

E (Sk)× exp
µ
−σ

2

4η

¶
= ∆+

1

2η

∞X
i=1

1

i

1

i!

ha
2
e−2η(k−1)∆

ii £
1− e−2iη∆

¤
,

and, for η > 0,6 we have

Cov (Sl, Sk)l<k × exp
µ
−σ

2

2η

¶
' 1

η

∞X
i=1

1

i

1

i!

∙
σ2

2η

¸i
1

iη

£
eiη∆ − 1

¤ £
1− e−iη∆

¤
e−iη(k−l)∆

− 1
2η

∞X
i=1

1

i

1

i!

ha
2

ii 1

2iη
e−2iη(l−1)∆

£
e−2iη∆ − 1

¤2
e−2iη(k−1)∆,

and

V ar {Sk} × exp
µ
−σ

2

2η

¶
' 2

η

∞X
i=1

1

i

1

i!

∙
σ2

2η

¸iµ
∆+

1

iη

£
e−iη∆ − 1

¤¶

− 1
2η

∞X
i=1

1

i

1

i!

ha
2

ii 1

2iη

£
e−2iη∆ − 1

¤2
e−4iη(k−1)∆.

These two approximations become exact in the stationary case with a = 0. The expressions

highlight the effect of temporal aggregation. In particular mean and variances become unbounded

as ∆ → ∞. The covariances shrink to zero for fixed l as k → ∞. Covariances and variances
approximations increase in the diffusion coefficient σ2 for a ≥ 0, while the effect of increasing
η is ambiguous. For a > 0 the covariance approximations are decreasing in s0 while the first

moments are increasing.

3.1 Digression: The intexpOUProcess and standard Error Component

Modeling

We consider the relationship between the structural equation (7) describing the intexpOU process

and the estimating equations of the error component modeling (ECM) approach as commonly
5 In our numerical verifications, using the first term of the summation yields already good results. Note,

however, that in the simulation study below we use the exact expressions.
6 Similar expressions can be derived for η < 0.
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implemented in the literature. Recall that this consists in first filtering out observables using a

linear regression of log-income on observables, and then to estimate an error component model

using the empirical covariance structure of the residuals in the second step.

For expositional simplicity assume that Z2 (t) only contains an aggregate time effect and an

age effect, so Z>2 (t) γ = γ1t +
£
agetk−1 + t− tk−1

¤
γ2, and that the time intervals are regular

and of length ∆ (usually a ‘year’). We have

log (Sk) = μ+ Z>1 β + γ1tk−1 + γ2agetk−1 + ε

+ log

Z ∆
0

exp ((γ1 + γ2) τ + u (tk−1 + τ)) dτ.

Consider the expectations of the last term.

μk ≡ E

(
log

Z ∆
0

exp ((γ1 + γ2) τ + u (tk−1 + τ)) dτ

)
.

Using the strict concavity of the log function we observe that

log

Z ∆
0

exp ((γ1 + γ2) τ + u (tk−1 + τ)) dτ

>

Z ∆
0

log exp ((γ1 + γ2) τ + u (tk−1 + τ)) dτ

=
1

2
(γ1 + γ2)

£
∆2k
¤
+

Z tk

tk−1

u (t) dt,

which implies that μk > 0 since u (t) has mean zero. The estimating equation used by the

standard ECM approach is therefore

log (Sk) = (μ+ μk) + Z>1 β + γ1tk−1 + γ2agetk−1 + resk (13)

resk = ε+

"
log

Z ∆
0

exp ((γ1 + γ2) τ + u (tk−1 + τ)) dτ − μk

#
where the true residual resk has mean zero.

Lemma 6 The marginal effects of the time-invariant covariates, age, and the time effect in the

first-step ECM regression equal the true population coefficients β and γ2.

Next, consider the covariance structure of the residuals resk, upon which the second step of

the ECM approach consists in imposing a model. A common choice is to model the residual

as the sum of a random effect ε, a random walk part pk representing a permanent shock, and

a MA(1) component zk representing temporary shocks: resk,ECM = ε + pk + zk where ε also

appears in the reduced form (13), with pk = pk−1+wk and zk = xk− δxk−1 and wk ∼iid
¡
0, σ2w

¢
and xk ∼iid

¡
0, σ2x

¢
. Upon taking first difference using the ECM we have

∆rk,ECM ≡ rk − rk−1 = wk + xk − (1 + δ)xk−1 + δxk−2
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so that

E {∆rk,ECM∆rk+s,ECM} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σ2w +

h
1 + (1 + δ)2 + δ2

i
σ2x for s = 0

− (1 + δ)2 σ2x for s = 1

δσ2x for s = 2

0 for s > 2.

(14)

However, using (13) we have

∆rk = log

Z ∆
0

exp ((γ1 + γ2) τ + ui (tk−1 + τ)) dτ − μk,

so E {∆rk∆rk+s} is a complicated function of the structural parameters
¡
η, σ2, γ

¢
, and is not

available in closed form. In general, the ECM estimating equations (14) do not describe correctly

the structure E {∆rk∆rk+s}.

4 A Generalized Box-Cox Transformed Model

The Mincerian formulation of the income process (1) could be criticized for two reasons. First,

the logarithmic transformation is a fairly ad hoc assumption. Second, as Lemma 4 states, the

distribution of time aggregated income Sk cannot exhibit heavy tails since all moments exist.

Yet it is an enduring stylized fact going back to Pareto (1896) that some income and earnings

distributions exhibit heavy tails, i.e. the tails of the distribution decay like power functions (see

e.g. Schluter and Trede 2002, 2008). Common earnings models in the literature fail to generate

these, and so does the cross-sectional earnings distribution implied by the intexpOU process. It is

therefore desirable to seek a generalization of the current model which optimally determines the

transformation of Y (t) in a data-dependent manner, and which nests the Mincerian logarithmic

transformation and heavy tail transformations as special cases. These desiderata are fulfilled by

the Box Cox transformation gλ given by

gλ (x) =

⎧⎨⎩ xλ−1
λ for λ 6= 0

ln (x) otherwise
,

for x > 0 leading to the generalized income model7

Y (t) = g−1λ (ỹ (t) + u (t)) .

In our application the Box Cox parameter λ will be estimated. The next Lemma elucidates the

role played by λ.
7Note that since the argument of the Box Cox transformation is required to be positve, this implies that the

distribution of u(t) be suitably truncated when λ < 0 in any formal analysis.
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Lemma 7 The model is linear for λ = 1, the Mincerian model follows for λ = 0. For λ < 0 the

distribution of Y (t) exhibits a heavy tail, whereas for λ ≥ 0 the right tail is decaying exponentially
fast. Expressed equivalently FY (t) is regularly varying in the right tail of its support when λ < 0,

and slowly varying otherwise. When λ < 0, the tail index (or the reciprocal of the coefficient of

regular variation) is proportional to |λ|−1.

The generalized observable integrated process is now given by

S
(λ)
k =

Z tk

tk−1

Y (t) dt =

Z tk

tk−1

g−1λ (ỹ (t) + u (t)) dt

which we refer to below as the intinvBCOU process. The intexpOU process is Sk = S
(0)
k .

Proposition 1 extends naturally to this setting, for instance the first moment being E(S(λ)k ) =R tk
tk−1

E
¡
g−1λ (ỹ (t) + u (t))

¢
dt. The non-separability of g−1λ (ỹ (t) + u (t)) can be extremely costly

in terms of computation time. For many practical applications it is therefore advisable to use

higher order Taylor series approximations. Let c (t) = λ
£
μ+ Z>1 β + Z>2 (t) γ

¤
+1, then for λ 6= 0

we have, correct to fourth order,

E (Y (t))

= c (t)1/λ +
1

2
(1− λ) c (t)1/λ−2

¡
σ2ε + σt,t

¢
+
1

24
(1− λ) (1− 2λ) (1− 3λ) c (t)1/λ−4

¡
3σ4ε + σ2t,t + 6σ

2
εσt,t

¢
and

E (Y (s)Y (t))

= [c (s) c (t)]
1/λ

+ [c (s) c (t)]
1/λ−1 ¡

σ2ε + σs,t
¢

+
1− λ

2

¡
σ2ε + σt,t

¢
c (t)

1/λ−2
c (s)

1/λ
+
1− λ

2

¡
σ2ε + σs,s

¢
c (s)

1/λ−2
c (t)

1/λ

+

∙
1− λ

2

¸2
[c (s) c (t)]

1/λ−2 ¡
3σ4ε + σ2ε (σt,t + σs,s + 4σs,t) + 2σ

2
s,t + σs,sσt,t

¢
+
1− λ

2
(1− 2λ) c (t)1/λ−3 c (s)1/λ−1

¡
σ4ε + σ2ε (σt,t + σs,t) + σs,tσt,t

¢
+
1− λ

2
(1− 2λ) c (s)1/λ−3 c (t)1/λ−1

¡
σ4ε + σ2ε (σs,s + σs,t) + σs,tσs,s

¢
+
1− λ

24
(1− 2λ) (1− 3λ) c (t)1/λ−4 c (s)1/λ

¡
3
¡
σ4ε + σ2t,t

¢
+ 6σ2εσt,t

¢
+
1− λ

24
(1− 2λ) (1− 3λ) c (s)1/λ−4 c (t)1/λ

¡
3
¡
σ4ε + σ2s,s

¢
+ 6σ2εσs,s

¢
where σs,t are given by (5).
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5 Estimation and Inference

Inspection of equations (11) and (12), and hence of (9) and (10), makes it clear that all parameters

θ =
£
η, σ, s0, μ, σ

2
ε, β, γ

¤>
are identified provided that first and second moments are employed

in the estimation. We estimate the parameters in particular by iterated GMM using estimating

functions based on the first and mixed moments. In addition, orthogonality conditions for the

covariates are included.

More specifically, denote by Sk,i the observed intexpOU process for individual i = 1, . . . , N

for the sampling interval k = 1, . . . ,K. Similarly, define Z1,i as the time-invariant covariates

(including a constant 1 for the intercept) and Z2,i(t) as the time-varying covariates of individual

i. The first moment conditions for sampling interval k are

f1,k =
1

N

NX
i=1

Zk,iSk,i −
1

N

NX
i=1

Zk,iEθ (Sk,i) = 0 (15)

where Z>k,i = [Z
>
1,i, Z

>
2,i(tk−1)] is the vector of covariates; the time-varying Z2,i is approximated by

its value at the start of the interval. The dimension of f1,k depends on the number of covariates;

if covariates are absent, f1,k is simply the difference between the empirical and theoretical first

moment.

In order to identify the parameters of the diffusion process {u(t)}, we need a set of second
moment conditions. We use

f2,k =

Ã
1

N

NX
i=1

S1,iSk,i − S̄1S̄k

!
−
Ã
1

N

NX
i=1

Eθ (S1,i)Eθ (Sk,i)−EθS1 ·EθSk

!
= 0

where

S̄k =
1

N

NX
i=1

Sk,i and EθSk =
1

N

NX
i=1

Eθ (Sk,i)

for k = 1, . . . ,K. Hence, f2,k is the difference between the empirical and the theoretical autoco-

variance of order k − 1.
Stack f1,k for all the different sampling intervals to get f>1 =

£
f>1,1, . . . , f

>
1,K

¤
, a vector of

length K · P where P is the number of covariates. Stack similarly the estimating function for

the second moments to get f>2 = [f2,1, . . . , f2,K ], and finally stack these to get f> =
£
f>1 , f

>
2

¤
,

which is a vector of length K (P + 1). Where necessary we make the dependence on θ explicit

by writing f (θ). Denote by Ω (θ) the theoretical covariance matrix of f (θ).

The initial or unweighted estimate of θ is obtained by unweighted GMM, θ1 = argmin f (θ)
> f (θ).

The nth iterate is obtained as

θn = argmin f (θ)
>
Ω (θn−1)

−1
f (θ) ,
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and we iterate until the parameter vector has converged. Denote the converged value by bθ.
More generally, write the estimate of the criterion function as bQ (θ) = f (θ)

>cWf (θ) wherecW be a weighting matrix which converges in probability to a positive semi-definite matrix W .

The estimator is given by bθ = argmin f (θ)>cWf (θ). Under standard regularity conditions (e.g.

Theorem 3.2 of Newey and McFadden, 1994) the estimator satisfies³bθ − θtrue

´
d→ N

³
0,
¡
G>WG

¢−1
G>WΩWG

¡
G>WG

¢−1´
where θtrue is the population value, G (θ) = df (θ) /dθ, G = G(θtrue), Ω (θ) is the theoretical

covariance matrix of f (θ) and Ω = Ω(θtrue). Let bΩ denote its estimator. The efficient weighting
matrix is Ω−1, estimated in the nth iteration by Ω(bθn−1)−1.
5.1 Initializations

The structural model permits convenient initializations of parameters β and σ2ε. In particular

the coefficients for the time-invariant covariates β can be estimated by a simple regression if the

time-varying covariates have a simple structure. As in our empirical application, assume that

the time-varying covariates Z2,i (t) consist of a time effect and a polynomial in age. Then we can

consider groups defined by ages, difference out group invariants, and identify the coefficients of

Z1 by with-in group variations in Z1.

More specifically, for interval k, the first moment can be written as

E (Si,k) = exp
¡
μ+ Z1,iβ + σ2ε/2 + σ2/4η

¢
Ψage(i),k

with Ψage(i),k =
R tk
tk−1

exp (Z2,i,t (t) γ) dt being the same for individuals of the same age. Since

Si,k = E (Si,k) + êrrori,k, a first order Taylor expansion yields log (Si,k) ≈ μ + Z1,iβ + σ2ε/2 +

σ2/4η + logΨ1,age(i),k + errori,k. For each age group (and each k), substract group means, and

finally regress individual within-group deviation from group means of log (Si,k) on within-group

deviation from group means of Z1,i to obtain β.

A good initial simple estimate of σ2ε can be obtained in situations in which σs,t ≈ 0, which
requires η > 0 and t À s. For instance, in the empirical application first and last periods

(indicated by l) are 7 years apart. In these circumstances group individuals present in periods

1 and l into cells defined by unique values of Z1 and birth years. Then using (9) and (10), for

each such cell c and i ∈ c we have E (S1,iSl,i) / [E (S1,i)E (Sl,i)] = exp
¡
σ2ε
¢
, and averaging over

all cells yields an initial estimate of exp
¡
σ2ε
¢
.
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6 Simulation Evidence

We briefly investigate the finite sample performance of the GMM procedure in two different

settings characterized by contrasting parameter values and lengths of time aggregation. Since

the parameters θ = [η, σ, s0]
> of the diffusion process {u (t)} are the principal objects of interest,

we assume that the process {ỹ (t)} is absent. Throughout the experiments, time evolves on
the unit time interval, and we assume that all individuals have the same start time t0 = 0.

The econometrician only observes the intexpOU processes Sk,i for individuals i = 1, . . . , N and

time intervals k = 1, . . . ,K. We consider initially K = 5 time intervals of varying lengths. In

particular, let I1 denote the intervals given by [.2, .3], [.3, .4], [.4, .5], [.5, .7], and [.7, .9]. Hence this

setting illustrates the virtue of the model to accommodate sampling intervals of varying length,

and substantial time aggregation. I2 collects the time intervals [.1, .15], [.15, .2], [.2, .25], [.25, .3],

[.3, .35]. Compared to the previous setting, the intervals are regular and time aggregations less

substantial. The total number of first and all mixed moments given by (11) and (12) is thus 20,

and we use all of these. The experiments have been repeated 500 times, we consider samples

of sizes N = 100 and N = 500 (far smaller than the sample size of our empirical application),

and compare results for iteration steps 0 (the unweighted estimation), 1 and 3. In the first

experiment, we set θ = [2.3, .707, .2828]> — which happens to coincide with the estimates in our

empirical application — and we report the estimates for both I1 and I2. In the next experiments,

we consider contrasting parameter configurations and interval settings. In particular, in the

second experiment we let θ = [1.5, .8, .5]> and estimate the model on I1, in the third experiment

we estimate θ = [.2, .2236, .3536]> on I2. Note that in the second experiment all parameters are

large compared to the third experiment, and that a = s20 − σ2/ (2η) > 0 so the model is not

stationary (but still stable), whereas a = 0 in the population in the third experiment (but we do

not impose this restriction in the estimation).

Tables 1 and 2 reports the means and standard deviations (SD) of the parameter estimates

across the simulations. We report these for the unweighted initialization step 0, and iterations

i = 1 and i = 3 in which the weighting matrix is bΩ(bθi−1)−1.8 SE(bθ3) is the mean standard error
(SE) in iteration 3. If convergence is achieved in step 2 then this result is reported. In Table 1

we report the results for sample sizes 100 and 500, but all subsequent tables report results for

N = 500 for reasons of space.

We turn to the results. Across all experiments we observe the following general features:

8Due to inaccuracies in the numerical approximation of the integrals in (11) and (12), the inverse of Ω(θi−1)

may have some slightly negative eigenvalues, i.e. it is not always positive definite. In these circumstances, we

render the weighting matrix positive definite by applying a spectral decomposition in which all eigenvalues below

a tolerance value of 10−6 are equated to this value.
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[η, σ, s0] = [2.3, .707, .2828]

I1 I2

iteration iteration

N 0 1 3 SE(bθ3) 0 1 3 SE(bθ3)
500 bη 2.118 2.326 2.310 0.160 2.074 2.312 2.307 0.191

(SD) (0.989) (0.355) (0.228) (0.007) (0.762) (0.292) (0.224) (0.008)bσ 0.673 0.705 0.708 0.019 0.657 0.702 0.705 0.014

(SD) (0.207) (0.033) (0.031) (0.002) (0.170) (0.021) (0.018) (0.000)bs0 0.253 0.273 0.278 0.035 0.279 0.283 0.285 0.019

(SD) (0.144) (0.060) (0.052) (0.006) (0.085) (0.033) (0.026) (0.001)

100 bη 2.133 2.600 2.362 0.361 2.310 2.576 2.319 0.431

(SD) (2.617) (1.872) (0.559) (0.071) (2.826) (2.487) (0.578) (0.091)bσ 0.634 0.698 0.705 0.045 0.628 0.684 0.702 0.031

(SD) (0.449) (0.115) (0.069) (0.010) (0.453) (0.081) (0.045) (0.003)bs0 0.304 0.272 0.281 0.113 0.280 0.299 0.286 0.044

(SD) (0.584) (0.179) (0.126) (0.130) (0.399) (0.181) (0.060) (0.017)

Table 1: Simulation evidence I: Estimating the parameters of the intexpOU process.

The estimation procedure copes well across different sample sizes, parameter settings and length

of time aggregation. Both weighted and unweighted mean point estimates are close to the

population values. The variability of the point estimates, as measured by the SDs, almost always

falls, hence efficiency increases, on moving from unweighted GMM to weighted GMM, and then

across the iterations. Mean SEs are in good agreement with the SDs (in case of eta some small

discrepancies are due to a small number of extreme point estimates), so we expect inference to

be reliable. Even sample sizes as low as 100 can be dealt with successfully, although variability

of the estimates can be somewhat large; the variability falls substantially when sample sizes are

increased from 100 to 500, which is still significantly smaller than in our empirical application.

For samples of size 500 the inefficient unweighted estimator yields good and significant estimates

across the two settings. Tables 1 also reveals that typically the precision of the estimates increases

as the extent of time aggregation falls. We proceed to examine this more systematically.

We investigate the impact of the effect of time aggregation on the estimation’s accuracy by

varying the number of grid points — the smaller the number of grid point, the longer the intervals.

More specifically, we consider individuals from time t = 0.1 to t = 0.6, and half this interval,

and repeatedly half the resulting intervals. Let I3 denote the case of two intervals, I4 the case

14



[η, σ, s0] = [1.5, .8, .5], I1 [η, σ, s0] = [.2, .2236, .3536], I2

iteration iteration

0 1 3 SE(bθ3) 0 1 3 SE(bθ3)bη 1.468 1.504 1.489 0.146 0.285 0.197 0.193 0.058

(SD) (0.526) (0.267) (0.232) (0.036) (0.088) (0.100) (0.108) (0.018)bσ 0.785 0.792 0.789 0.026 0.247 0.221 0.223 0.005

(SD) (0.190) (0.039) (0.034) (0.003) (0.088) (0.008) (0.006) (0.000)bs0 0.489 0.494 0.495 0.043 0.352 0.352 0.352 0.014

(SD) (0.095) (0.053) (0.047) (0.007) (0.046) (0.024) (0.017) (0.001)

Table 2: Simulation evidence II: Estimating the parameters of the intexpOU process.

of 4 intervals, and I5 the case of 8 intervals. All intervals are regular. The mean estimates as

well as their standard deviation (over all simulation runs) and their mean standard errors after

iterating GMM three times are reported in table 3. The table indicates that the estimators are

always unbiased, even in case I1 where there are only two intervals. However, the interval length

has a substantial impact on the standard errors. The larger the number of distinct intervals the

smaller the standard error.

[η, σ, s0] = [1.5, .8, .5] [η, σ, s0] = [.2, .2236, .3536]

I3 I4 I5 I3 I4 I5bη 1.523 1.505 1.501 0.200 0.196 0.196

(SD) , [SE] (.27),[.29] (.18),[.18] (.17),[.16] (.06),[.06] (.07),[.05] (.07),[.04]bσ 0.800 0.798 0.799 0.222 0.222 0.223

(SD) , [SE] (.07),[.08] (.03),[.03] (.02),[.02] (.01),[.01] (.01),[.01] (.01),[.00]bs0 0.500 0.497 0.498 0.353 0.352 0.351

(SD) , [SE] (.04),[.04] (.03),[.03] (.03),[.03] (.02),[.02] (.02),[.01] (.02),[.01]

Table 3: Simulation evidence: The effect of time agggregation.

In our final set of experiments we turn from the baseline intexpOU process to the more general

Box Cox transformed model. The econometrician observes the intinvBCOU process S(λ)k . We

reconsider the previous settings, and consider three cases for the Box Cox parameter λ, namely

λ = 0.5, λ = 0, and λ = −0.1.
Table 4 reports the results. For λ = 0.5, all the estimates are very good across the investigated

settings. The SDs diminish across the iterations, and the average SEs are in good agreement with

the SDs. For λ ≤ 0 the weighted estimation yielded a small number of large deviations, which
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[η, σ, s0] = [1.5, .8, .5], I1 [η, σ, s0] = [.2, .2236, .3536], I2

iteration iteration

0 1 3 SE(θ3) 0 1 3 SE(θ3)

λ = 0.5 λ = 0.5

η 1.461 1.538 1.512 0.196 0.273 0.205 0.198 0.075

(SD) (0.237) (0.214) (0.192) (0.035) (0.069) (0.194) (0.108) (0.017)

σ 0.778 0.791 0.788 0.037 0.241 0.222 0.221 0.009

(SD) (0.049) (0.041) (0.041) (0.015) (0.076) (0.013) (0.013) (0.005)

s0 0.488 0.492 0.491 0.060 0.351 0.351 0.350 0.029

(SD) (0.094) (0.060) (0.057) (0.005) (0.018) (0.030) (0.016) (0.008)

λ 0.465 0.465 0.460 0.219 0.500 0.551 0.515 0.302

(SD) (0.192) (0.215) (0.205) (0.040) (0.269) (0.294) (0.265) (0.053)

λ = 0 λ = 0

η 1.512 1.881 1.751 0.230 0.264 0.190 0.193 0.085

(SD) (0.233) (0.756) (0.627) (0.086) (0.049) (0.187) (0.114) (0.011)

σ 0.821 0.906 0.889 0.083 0.255 0.229 0.227 0.019

(SD) (0.062) (0.205) (0.205) (0.030) (0.056) (0.017) (0.017) (0.004)

s0 0.521 0.575 0.560 0.074 0.357 0.360 0.359 0.043

(SD) (0.087) (0.164) (0.132) (0.024) (0.021) (0.033) (0.022) (0.006)

λ 0.040 0.043 0.066 0.256 0.027 0.105 0.052 0.382

(SD) (0.187) (0.251) (0.258) (0.047) (0.283) (0.325) (0.307) (0.060)

λ = −0.1 λ = −0.1
η 1.509 1.965 1.846 0.229 0.265 0.200 0.200 0.083

(SD) (0.240) (0.909) (0.693) (0.097) (0.042) (0.232) (0.124) (0.012)

σ 0.859 0.964 0.948 0.096 0.250 0.231 0.229 0.020

(SD) (0.075) (0.252) (0.254) (0.045) (0.055) (0.021) (0.020) (0.003)

s0 0.539 0.595 0.577 0.079 0.363 0.366 0.364 0.045

(SD) (0.092) (0.219) (0.170) (0.037) (0.022) (0.042) (0.028) (0.005)

λ 0.004 0.012 0.001 0.254 -0.058 0.039 -0.043 0.393

(SD) (0.172) (0.287) (0.356) (0.076) (0.268) (0.460) (0.338) (0.065)

Table 4: Simulation evidence: Estimating the parameters of the Box Cox transformed model.

Notes: As for Table 2. N = 500.
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explains the occasional discrepancy between SDs and average SEs for iteration 3. Relatedly, the

unweighted estimator is preferred to the weighted estimator in the first setting and for λ = −0.1
the mean estimate fails to pick up the sign of λ as the mean estimate is statistically insignificant,

but recall that time aggregation in this setting is substantial. By contrast, the mean estimate of λ

correctly picks up the sign in the second setting. The results for λ = 0 should also be compared

to the results for the intexpOU process of Table 2. It is clear that the combination of an

unconstrained estimation of λ and the use of fourth order approximations leads to no significant

deterioration of the estimates. In summary, for sample sizes of 500, efficiency gains from iterated

estimation only arise for λ = 0.5, the unweighted estimator yields typically good results, and the

nested intexpOU population case is well estimated by the unconstrained estimator.

7 Empirical Application: Income Dynamics in the US.

We estimate the parameters of the structural continuous-time model using individual annual

earnings data from the Panel Study of Income Dynamics (PSID).

7.1 The Data

The PSID data are provided in a standardized and easily accessible form by the Cross National

Equivalent Files (CNEF) project (Frick et al., 2007).9 We use a balanced panel of annual

observations from 1989 until 1996, a total of 8 waves. Sk,i are individual’s i labor earnings

in year k. These labor earnings include wages and salary from all employment including self-

employment as well as bonuses, overtime and commissions. Annual earnings are measured in

current 10,000 US dollars.

Turning to sample selection, we consider full-time employees having worked at least 1,500

hours per year. We follow standard practice and remove extreme outliers that could influence

the estimation results by deleting the top and bottom 0.5% percent of observations in each

wave. Our Mincerian covariates include sex, age, age2, and years of education interpreted a

(pre-determined) measure of human capital. In order to capture the effect of economic growth,

we also include a time trend. Cohort effects are not identified when age and time are regressors

present (Deaton and Paxson, 1994).

Table 5 reports some cross-sectional summary statistics of income. The number of persons

in the panel is N = 1, 772. The average age in the first wave is 36.4. Since the panel is balanced,

average age increases by 1 each year.

9http://www.human.cornell.edu/che/PAM/Research/Centers-Programs/German-Panel/cnef.cfm.
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mean st dev

Year income income

[104$] [104$] Covariates

1989 3.0430 1.7810 proportion male 74.5

1990 3.2560 1.8523 mean years of education 13.5

1991 3.4567 1.9448 mean age in first wave 36.4

1992 3.6423 2.0626

1993 3.9523 2.2847

1994 4.0787 2.4780

1995 4.3003 2.6038 number of individuals 1,772

1996 4.4402 2.7473 number of observations 14,176

Table 5: PSID descriptive statistics.

Estimating a standard discrete-time random effects panel regression of log-earnings on co-

variates yields the following coefficient estimates (standard errors): sex: −0.319 (0.022), years
of schooling: 0.114 (0.005), age: 0.081 (0.005), age squared: −0.00085 (5.3 × 10−5) and linear
time trend: 0.038 (0.002). The variance of the individual effect is estimated as 0.153 while the

variance of the idiosyncratic error term is 0.078. The principal interest, however, is the stochastic

structure of the continuous-time process {u(t)}.

7.2 Estimation Details

We estimate the model parameters by iterated GMM using the estimating equations described

in Section 5. The length of vector f , i.e. the number of moment conditions used to identify the

parameters, is K(P + 1) = 8 · 6 = 48.10 We impose the stationarity restriction a = 0, i.e. the

variance s20 of the initial deviation u(t0) is not estimated but calculated from the estimates of

η and σ2 using (6). This is a mild restriction since the impact of the initial deviation vanishes

over time if the OU process is stable.

7.3 Empirical Results

The estimates of the structural parameters are reported in Table 6. All parameters are sta-

tistically significant. The parameter estimates of β and γ are very plausible, close to the ones

10While there are six covariates (sex, education, age, age2, time trend, and a constant for the intercept) present,

we have to drop either the time trend or age from the list of covariates if we make the simplifying assumption in

equation (15) that Z2 does not change during the interval.
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parameter estimate SE BC model SE

intercept μ −2.3296 0.2315 −1.4072 0.2407

sex β1 −0.3038 0.0583 −0.2281 0.0535

education β2 0.1254 0.0216 0.1084 0.0153

age γ1 0.0928 0.0063 0.0654 0.0063

age2 γ2 −0.0010 0.0001 −0.0009 0.0001

time effect γ3 0.0407 0.0032 0.0360 0.0041

individual effect σ2ε 0.1177 0.0125 0.0870 0.0225

OU parameter η 2.3240 0.6475 1.955 0.4835

diffusion coefficient σ2 0.5033 0.1990 0.3287 0.1286

Box Cox parameter λ - - −0.1098 0.0576

Table 6: Coefficient estimates of the intexpOU earnings process estimated using PSID data.

estimated in a naive panel regression (though the standard errors are considerably larger since

the naive panel model neglects the intertemporal dependence), and are of the same magnitudes

as reported in the literature. This should not be surprising given the result stated in Lemma

6. The implied estimated variance of the initial deviation equals the unconditional variance

ŝ20 = σ̂2/(2η̂) = 0.1083. As regards the interpretation of the parameters of the OU process, this

is perhaps best done visually in terms of their implications on moments and the cross-sectional

income distribution. Figure 1 (a) and (b) displays the goodness of fit of the model by comparing

empirical sample moments of income and the moments predicted by the estimated model. It is

evident that the moments are well estimated.

The estimates of the parameters of the Ornstein-Uhlenbeck component, η̂ and σ̂2, imply that,

given the individual effect εi, deviations from the expected log-income path decline relatively

rapidly: The percentage deviation of the latent continuous-time income Yit from its mean is

expected to halve in about four months. In order to gauge the relative influence of the individual

effect on the distribution we compute the cross-sectional coefficient of variation of the continuous-

time process,

CV (Yit) =

p
V ar (Yit)

E (Yit)
=

sµ
exp

µ
σ2ε +

σ2

2η

¶
− 1
¶
.

Inserting our parameter estimates yieldsdCV = 0.5035. Setting σ2ε = 0 to eliminate the individual

effects the coefficient of variation decreases to 0.3382, while setting σ2 = 0 to eliminate the error

process results in dCV = 0.3534. Even though the two components are not additive we can

conclude that the influence of the individual effect and the error process on the distribution is of

roughly the same order of magnitude.
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Figure 1: (a) Empirical means (solid line) and model implied first moments (dashed line); (b)

empirical (solid) and theoretical (dashed) variances in 1989 and autocovariances between 1989

and 1990, . . . , 1996; (c) histogram and model implied density of income 1989; (d) empirical

(solid) and theoretical (dashed) Pareto plots of income 1989
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We proceed to consider the entire income distribution. Lemma 2 states that the income

density implied by the structural model is not tractable analytically. We therefore estimate the

income density by Monte Carlo methods. In particular, we simulate income paths of B = 20, 000

individuals having the same distribution of covariates as the original data. Figure 1 (c) depicts

the histogram of the actual incomes for the year 1989, and the kernel density estimate of the

simulated incomes. The model-based simulated density describes the actual income density well.

Finally, Figure 1 (d) shows the Pareto plots of the 1989 income data and the corresponding

Pareto plot of the simulated incomes. Recall that a Pareto plot depicts log (1− F (x)) versus

log (x). If the distribution is heavy-tailed, i.e. 1 − F (x) = x−1/γL0 (x) for sufficiently large

x where L0 is a slowly varying function and γ > 0, then the plot is a straight line with slope

−1/γ for sufficiently large x. As regards the theoretical Pareto plot, we know from Lemma 4

that the intexpOU process cannot generate heavy tails. This manifests itself in the curvature

of the theoretical Pareto plot in the extreme right tail. However, Figure 1 (d) reveals that the

empirical Pareto plot becomes a straight line in the rightmost tail of the income distribution. In

particular, by inspection, the plot suggests the estimate 1/bγ ≈ −11.
In the light of this tails behavior, we estimate the generalized model for the intinvBCOU

process, in which the estimated Box Cox parameter, if negative, picks up the heavy tail. Table

6 reports the results. The Box Cox parameter is indeed estimated to be negative, but is small in

magnitude and only marginally significant. Lemma 7 and the Remark following its proof in the

Appendix state that γ = |λ|−1 when λ < 0. The point estimate bλ = −.1 suggests an estimate
of γ which is very close to the slope of the Pareto plot in its right tail obtained by inspection.

Turning to the the remaining covariate coefficients reported in the Table, these hardly change,

while the estimates of the intercept μ and the OU drift parameter η have fallen in magnitude.

We summarize all this evidence by concluding that the estimated structural model of the

intexpOU describes the empirical US earnings distributions and the intertemporal dependencies

very well. Like all standard earnings models in the literature, the process generates a right

tail of the earnings distribution which decays too fast, but this tail behavior is captured by the

computationally more intensive generalized model of the intinvBCOU process. However, the

difference in tail decay between the two models is not “too large”, so that for most applications

the simpler intexpOU process provides a good description of all the features of the US earnings

distribution.
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8 Conclusion

We have considered continuous-time earnings models and their associated observable, time ag-

gregated or ‘integrated’, processes. We have shown that time aggregation alters important sta-

tistical properties, for instance the integrated process does not inherit the lognormality and

Markovianess of the underlying continuous-time process. The parameters of this process are

estimable by GMM, and the finite sample performance of the estimator is shown to be good

in several simulation studies. When applied to US panel data, the estimated models replicate

well all important features of the actual earnings distribution. While the computationally more

demanding intinvBCOU process does capture the heavy-tailedness of the actual earnings distri-

bution, the estimate of the Box Cox parameter also reveals that the discrepancies between the

speed of tail decays is relatively small. Hence we conclude that the simpler intexpOU process

does a good job in describing the actual US earnings distributions.
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A Moment Expressions for the intexpOU Process with

ỹ (t) ≡ 0

The presence of covariates in the ỹ (t) process precludes us from saying much analytically, but in

the absence of the ỹ (t) process we can obtain some useful insights about the moments of Sk. For

expositional brevity we focus on regular intervals of length ∆. For the first moment we obtain

an exact result. Exact results are also available in the stationary case (when a = 0), otherwise

we state approximations for variances and covariances.

Lemma 8 Consider the case when ỹ (t) ≡ 0 and regular intervals of length ∆. Then

E (Sk)× exp
µ
−σ

2

4η

¶
= ∆+

1

2η

∞X
i=1

1

i

1

i!

ha
2
e−2η(tk−1)∆

ii £
1− e−2iη∆

¤
.

In the stationary case with a = 0, or asymptotically with k → ∞, we have E (Sk) =

∆ exp
¡
σ2/4η

¢
, while the expectation becomes unbounded for ∆→∞.

Exact expressions for covariances and variances are only available in the stationary case

considered explicitly below in Lemma 10. Asymptotics for k → ∞ i.e. tk−1 → ∞ yield simple

results and are stated next, while approximations for the general case are stated below in Lemma

12.

A.1 Moments’ Asymptotics

Lemma 9 Consider the case when ỹ (t) ≡ 0, let η > 0 and consider regular intervals of fixed

length ∆. As k →∞

E {Sk} → exp

µ
σ2

4η

¶
∆,

Cov {Sl, Sk}l fixed → 0,

V ar {Sk} × exp
µ
−σ

2

2η

¶
1

2
→ 1

η

∞X
i=1

1

i

1

i!

∙
σ2

2η

¸iµ
∆+

1

iη

£
e−iη∆ − 1

¤¶
.

A.2 The Exact Moments of {Sk} in the Stationary Case

In the stationary case a = 0, and we can state exact expressions for the covariance structure:

Lemma 10 Consider the case when ỹ (t) ≡ 0, let a = 0 and consider regular intervals of fixed
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length ∆. Then

E {Sk} = exp

µ
σ2

4η

¶
∆

Cov {Sl, Sk}l<k × exp
µ
−σ
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Of course Lemma 10 specializes to Lemma 9 as k →∞.
Moreover, we can derive the spectral density for the stationary process.

Lemma 11 Consider the case when ỹ (t) ≡ 0, let a = 0 and consider regular intervals of fixed
length ∆. The spectral density is

fS (λ) =
∞X
j=1

cj
2π

∙
1− e−2jη∆

1− 2e−jη∆ cosλ+ e−2jη∆

¸
(16)

with cj = exp
³
σ2

2η

´
1
j
1
j!

h
σ2

2η

ij
1
jη2

£
ejη∆ + e−jη∆ − 2

¤
and λ ∈ [−π, π].

The first order term in the series of fS (λ) , c1
2π

£
1− 2e−η∆ cosλ+ e−2η∆

¤−1
, is the spectral

density of an AR(1) process with coefficient e−η∆, with the variance of the white noise error

equal to c1 and depending on the autoregressive coefficient.11

A.3 Covariance Approximations for the General Case

The exact expression for the first moment is stated above in Lemma 8. Exact expressions for

the covariance structure are not available in the general case, but we can state the following

approximations:

Lemma 12 Consider the case when ỹ (t) ≡ 0 and assume that η > 0. Then

Cov (Sl, Sk)l<k × exp
µ
−σ
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11For completeness we also state the spectral density of the underlying continuous process as fY (λ) =
1
2π

σ2 exp σ2

2η
∞
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for λ ∈ R.
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The order of the approximation is a∆ 1
ηe
−η(k−1)∆ £1− e−η∆

¤
.

In the stationary case a = 0 and this covariance and variance immediately simplify to the

statement in Lemma 10, while with tl−1 fixed and tk−1 →∞we immediately obtain the statement

of Lemma 9. Similar approximations can be derived for the case η < 0.

B Proofs

We briefly state two Lemmas which will be used in the subsequent proofs.

Lemma 13 Let X = (X1, . . . ,XT )
> be a multivariate normal random variable. Its moment

generating function is

MX(θ) ≡ E
³
eθ

>X
´
= exp

µ
μ>θ +

1

2
θ>Σθ

¶
where μ is the expectation vector and Σ = [σst] is the covariance matrix. The expectation of the

exponentiated sum is then

E
¡
eX1+...+XK

¢
=MX(1) = exp

Ã
KX
k=1

μk +
1

2

KX
k=1

KX
r=1

σkr

!
, (17)

and Y = exp(X) is multivariate lognormal with expectations and covariances given by

E(Yk) = exp

µ
μk +

1

2
σkk

¶
Cov(Yk, Yr) = exp

µ
(μk + μr) +

1

2
(σkk + σrr)

¶
(exp (σkr)− 1) .

Direct computations lead to the following lemma.

Lemma 14 The process {ỹ (t) : t ≥ t0} is Gaussian with

E (ỹ (t)) = μ+ Z>1 β + Z>2,tγ

Cov (ỹ (s) , ỹ (t)) = σ2ε,

and the process {u (t) : t ≥ t0} is Gaussian with

E (u (t)) = 0

Cov (u (s) , u (t)) =

∙
s20 +

σ2

2η

³
e2ηmin(s,t) − 1

´¸
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µ
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σ2

2η

¶¸
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.
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Proof of Proposition 1. By direct computation using the Lemmas 13 and 14. In particular

{Y (t) : t ≥ t0} is a log-normal process. Finally, {exp (u (t))} is Markov since u (t) is, because
the increments are independent, and {Y (t)} is Markov given the independence of {ỹ (t)} and
{u (t)}.

Proof of Lemma 2. The distribution of Sk has no closed form expression, since the distribution

of the sum of dependent log-normal variates has no exact closed form. As regards the non-Markov

property, only consider the OU process and intervals of equal length 0 = t0 < t1 = ∆ < t2 =

2∆ < . . . < tT = T∆ . Using (4) we find

Sk =

Z k∆

(k−1)∆
exp (u (t)) dt

=

Z ∆
0

exp

Ã
u ((k − 1)∆) e−μt + σ

Z (k−1)∆+t

(k−1)∆
eμ(s−t)dWs

!
dt.

If the value of the latent process at the beginning of the interval, u ((k − 1)∆), was known, Sk
would not depend on Sk−1, Sk−2, . . . However, since the process u (t) is latent we can only use

the conditional distribution of u ((k − 1)∆) given Sk−1, Sk−2, . . . to determine the distribution

of Sk. As the same holds true for Sk−1 and u ((k − 2)∆), the process {Sk : k = 1, . . . , T} cannot
be Markov.

Proof of Lemma 7. We recall some results from extreme value theory (EVT). The Generalized

Extreme Value distribution is given by

G (x) = exp
³
−
h
1 +

γ

σ
(x− μ)−1/γ+

i´
where γ is the shape parameter of interest. It is the limit distribution of the normalized maximum

of a random variable X with distribution FX (if the limit exists). γ > 0 is the Frechet case,

so FX is heavy tailed, γ → 0 is the Gumbel case so FX is slowly varying in its right tail, and

γ < 0 is the negative Weibull case. Let xF be the upper end point of the distribution FX , and

let hX (x) =
1−FX(x)
fX(x)

be the reciprocal of the hazard function. A well-known result from EVT

(Kaufmann, 2000) states that γX = limx→xF h0X (x).

Consider the Box Cox transformation g (x) = xλ−1
λ with x > 0 and λ 6= 0. For later

reference we have g0 (x) = xλ−1 and g00 (x) = (λ− 1)xλ−2 so g00 (x) / [g0 (x)]2 = (λ− 1)x−λ. Let
Y = g−1 (U). We prove the result stated in the Lemma more generally for distributions of U

which lie in specific domains of attractions which depend on the sign of λ.

We have

FY (y) = Pr {Y ≤ y} = Pr
©
g−1 (U) ≤ y

ª
= Pr {U ≤ g (y)} = FU (g (y)) . (18)
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The associated density is fY (y) = fU (g (y)) g
0 (y) , and

hY (y) =
1− FY (y)

fY (y)
=
1− FU (g (y))

fU (g (y))

1

g0 (y)

= hU (g (y))
1

g0 (y)
.

Differentiating the latter yields

h0Y (y) = h0U (g (y))− hU (g (y))
g00 (y)

[g0 (y)]2
.

In the particular case of the Box Cox transform, g00 (y) / [g0 (y)]2 = (λ− 1) y−λ, so

γY = γU − (λ− 1) lim
y→yF

hU (g (y)) y
−λ. (19)

As regards the Box Cox parameter λ, we distinguish between three cases.

Case (a) If λ > 0, assume that the distribution of U is in the domain of attraction of the

Gumbel distribution, so that

hU (x) = Cx−α
¡
1 +O

¡
x−ε

¢¢
with α > −1, ε > 0 and C > 0. This class includes the normal distribution with α = 1 and the

lognormal distribution with α = 0. We have yF =∞. Then h0u (x) = −αCx−(α+1) (1 +O (x−ε)),

and thus γU = limx→∞ h0u (x) = 0. Moreover

hU (g (y)) y
−λ = Cλ−α

£
yλ − 1

¤−α
y−λ

³
1 +O

³£
yλ − 1

¤−ε´´
.

Then limy→∞ hU (g (y)) y
−λ = 0 for α ≥ 0. We have the result that γY = 0 so FY is slowly

varying in its right tail.

Case (b) When λ = 0, h0Y (y) = h0U (g (y)) + limy→∞ hU (g (y)), with g (y) = ln (y) so for

α ≥ 0, γY = 0 again.
Case (c) Next, consider λ < 0. Then g has an asymptote at |λ|−1, so that U cannot exceed

|λ|−1. Assume that the distribution of U satisfies this restriction. In particular, the distribution

of U could be normal but truncated at uF → |λ|−1so that yF = g−1 (uF ). Therefore the

distribution of U is now in the domain of attraction of the (negative) Weibull distribution, so

that

1− FU (u) = C (uF − u)α
h
1 +D (uF − u)β +O

³
(uF − u)β+ε

´i
(20)

with α, β, ε, C > 0 and D ∈ R, and uF <∞. Then

fU (u) = αC (uF − u)
α−1

h
1 + ((α+ β) /α)D (uF − u)

β
+O

³
(uF − u)

β+ε
´i

29



and

hU (u) = α−1 (uF − u)
1 +D (uF − u)β +O

³
(uF − u)β+ε

´
1 + ((α+ β) /α)D (uF − u)

β
+O

³
(uF − u)

β+ε
´ .

It follows that γU = limu→uF h
0

U (u) = −α−1. The Box Cox transform is g (x) = 1−x−|λ|
|λ| and

g00 (y) / [g0 (y)]
2
= − (1 + |λ|) y|λ|, so

γY = γU + (1 + |λ|) lim
y→yF

hU (g (y)) y
|λ|.

We have for uF → |λ|−1 and thus yF →∞

lim
y→∞

hU (g (y)) y
|λ| = lim

y→∞
α−1

µ
|λ|−1 − 1− y−|λ|

|λ|

¶
y|λ|

= lim
y→∞

α−1
µ
y−|λ|

|λ|

¶
y|λ|

= α−1 |λ|−1 .

In summary

γY = −α−1 + (1 + |λ|)α−1 |λ|−1

= α−1 |λ|−1 .

Therefore γY > 0 and the distribution is heavy-tailed.

Remark 15 If the distribution of U is a truncated normal distribution, then FU is in the domain

of attraction of the negative Weibull distribution given by (20) with α = 1, and then γY = |λ|
−1

if λ < 0.

Proof : Consider

1− FU (u) = c
1√
2πσ

Z uF−u

0

exp

Ã
−1
2

µ
(u− μ) + ε

σ

¶2!
dε.

The claim follows using a Taylor expansion about ε = 0.

For the next set of proofs, the following result is useful.

Lemma 16 Define the error integral by

EI (y;ea) ≡ Z exp (eay)
y

dy = log y +
eay
1
+
1

2

(eay)2
2!

+
1

3

(eay)3
3!

+ .. (21)
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Then Z tk
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exp
¡eaebt¢ dt =
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¶Z τk
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The Lemma follows after the change of variables y = ebt with inverse Jacobian ∂y/∂t = by.

Proof of Lemma 8. We have

E {Sk} =

Z ∆
τ=0

E {Y (tk−1 + τ)} dτ

= exp

µ
σ2

4η

¶Z ∆
τ=0

exp
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2
e−2ηtk−1e−2ητ

´
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Hence using Lemma 16 we obtain
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Proof of Lemma 9.

(i) The expression for the first moment follows immediately from Lemma 8.

(ii) The covariances. Fix s and apply Proposition 1. Then

lim
t→∞

Cov (Y (s) , Y (t))s<t × exp
µ
−σ

2

2η

¶
= 0

and therefore

lim
tk−1→∞

Cov {Sl, Sk}tl−1 fixed

= lim
t→∞

Z tl−1+∆

s=tl−1

(Z ∆
τ=0

Cov (Y (s) , Y (tk−1 + τ)) dτ

)
ds

= 0.

(iii) The variances. Letting both s, t→∞ we have by Proposition 1

Cov (Y (s) , Y (t))s<t × exp
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Then
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A similar calculation for exp
¡
−σ2/2η

¢
×
R tk
t=tk−1

R tk−1
s=t

Cov (Y (s) , Y (t)) dsdt yields the same

result, so putting everything together, we have
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Proof of Lemma 10. Use similar calculations as in the proof of Lemma 9.

Proof of Lemma 11. Using Lemma 10 with k = l+ h the autocovariance function is, for all h,

γS (h) =
∞X
j=1

cje
−bj|h|
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with b = η∆ > 0 and cj = exp
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. The spectral density is

defined as fS (λ) = 1
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−1. Consider first the first order term
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The spectral density is therefore
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.

Remark: The spectral density of the underlying continuous-time process Y (t) is
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Proof. The autocovariance function is
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Then

fY (λ) =
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Proof of Lemma 12. Consider the covariance expressions. We have

Cov (Sl, Sk)l<k × exp
µ
−σ

2

2η

¶
=

Z tl

tl−1

Z tk

tk−1

∙
exp

µ
σ2

2η
e−ηteηsg (s, a)

¶
− exp

³a
2
e−2ηte−2ηs

´¸
dsdt

with g (s, a) = 1 + a
³
σ2

2η

´−1
e−2ηs + a

2

³
σ2

2η

´−1
e−ηte−3ηs. Hence g (s, a) ' 1 for η > 0 and

sufficiently large s or exactly for a = 0. Using then Lemma 16 as usual we obtain

Cov (Sl, Sk)l<k × exp
µ
−σ

2

2η

¶
' 1

η

∞X
i=1

1

i

1

i!

∙
σ2

2η

¸i
1

iη
eiηtl−1

£
eiη∆ − 1

¤ £
1− e−iη∆

¤
e−iηtk−1 −

1

2η

∞X
i=1

1

i

1

i!

ha
2

ii 1

2iη
e−2iη(tl−1+tk−1)

£
e−2iη∆ − 1

¤2
.

Next, consider the approximation error, which is the integral of

exp

µ
σ2

2η
e−ηteηs

¶h
exp

³
ae−ηte−ηs +

a

2
e−2ηte−2ηs

´
− 1
i

= exp

µ
σ2

2η
e−ηteηs

¶
×
£
ae−ηte−ηs + o

¡
ae−ηte−ηs

¢¤
.
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Hence integrating the leading term yields

a

Z tk

t=tk−1

e−ηt
Z tl
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exp

µ
σ2

2η
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¶
dsdt

< a
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µ
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dsdt

= a
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"
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i
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µ
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£
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¤#
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1

η
e−η(k−1)∆

£
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¤
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1
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∞X
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1

i

1

i!

µ
σ2

2η

¶i
eiη(l−1)∆

£
eiη∆ − 1

¤ 1− e−η(i+1)∆

(i+ 1) η
e−η(i+1)(k−1)∆.

Considering the ratio of the first term of the summation and

a∆ 1
η e
−η(k−1)∆ £1− e−η∆

¤
yields

1

∆

µ
σ2

2η

¶
1

η

£
eη∆ − e−η∆

¤
e−η(k−l)∆

which is less than one for sufficiently large η (k − l).

The variance expression is derived similarly.
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