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Abstract

This paper is about the city size and growth rate distributions as seen
from the perspectives of Zipf’s and Gibrat’s law. We demonstrate that the
Gibrat and Zipf views are theoretically incompatible in view of the Fisher-
Tippett theorem, and show that the conflicting hypotheses about the size
distribution are testable in a coherent encompassing estimating framework
based on a single index.

We then show that the two views can be reconciled in a slightly modified
but internally consistent statistical model: we connect economic activity and
agglomeration in a model of Gibrat-like random growth of sectors, whose
random number is linked to Zipf-like city size. The resulting average growth
rate is a random mean, and we derive its invariant distribution.

Our empirical analysis is based on a recent administrative panel of sizes
for all cities in Germany. We find strong evidence for the prediction of the
growth model, as well as for a weak version of Zipf’s law characterising the
right tail of the size distribution.
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1 Introduction

The size distribution of cities continues to be the subject of much controversy

and debate ever since the 1913 paper by Auerbach, and the applications of

ideas expounded in Gibrat (1931) and Zipf (1949). At the heart of the de-

bate are two conflicting views. The Gibrat view holds that city sizes grow

proportionately and independently of size, which, by a central limit theorem

argument applied to log size, implies that sizes are asymptotically lognormally

distributed. By contrast, the Zipf view in its weak form considers only the

largest cities and holds that the size distribution is heavy tailed, so that the

right tail decays like a power function and not exponentially fast as in the log-

normal case. Stronger flavors claim that the exponent of the power function

be −1, or that the entire size distribution is Pareto-like. Recent examples are

the opposing views of Eeckhout (2004, 2009), and Gabaix (1999b), Córdoba

(2008) and Levy (2009), Rozenfeld et al. (2011) and Ioannides and Skouras

(2013).1

We show that this debate about the size distribution can be addressed in

a common statistical framework based on the classic Fisher-Tippett theorem,

and the extreme value theory emanating from it. The Gibrat and the Zipf view

are revealed to correspond to two (out of three possible) distinct limit distribu-

tions admitted by the theorem, and are therefore theoretically incompatible.

This implies that the frequently encountered claim in the recent literature that

‘Gibrat’s law implies and leads to Zipf’s law’ is wrong. The hypothesis about

the tail behavior of the size distribution can thus be equivalently formulated as

1To illustrate, Eeckhout (2004) claims that “cities grow proportionately ... and this
gives rise to a lognormal distribution of cities”, and “it is shown that the size distribution of
the entire sample is lognormal and not Pareto”, whereas Gabaix (1999b) states “whatever
the particulars driving the growth of cities, ... as soon as they satisfy (at least over a
certain range) Gibrat’s law, their distribution will converge to Zipf.” Córdoba (2008) states
that “the city size distribution in many countries is remarkably well described by a Pareto
distribution.”Gabaix and Ioannides (2004) provide an extensive survey of the literature on
the city size distribution.
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a hypothesis about the domain of attraction of the limit distribution. In par-

ticular, power-law behavior for the largest cities is not a surprising empirical

regularity2 but must hold for any thick tailed size distribution, i.e. distribu-

tions in the domain of attraction of the Fréchet distribution. By contrast, the

lognormal distribution is in the domain of attraction of the thin-tailed Gumbel

distribution. Whether the size distribution is in the domain of attraction of

the Fréchet or the Gumbel distribution is an empirical question, which will

be analysed in a coherent encompassing estimating framework based on the

generalized extreme value distribution. This gives rise to a simple empirical

test based on a single index.

While we argue that the standard version Gibrat and Zipf views are the-

oretically incompatible, we show that the two can be reconciled in a slightly

modified but internally consistent statistical model: connecting economic ac-

tivity and agglomeration, we consider a model of Gibrat-like random growth

of economic sectors, whose random number is linked to Zipf-like city size in

a manner that is consistent with Christaller’s central place theory, a theory

that has recently been revisited in Mori et al. (2008) and Hsu (2012). The

resulting average growth rate being a random mean, we derive its invariant

distribution and verify its empirical validity. In particular, we show that,

under the maintained assumptions, the (annual and ten-year) growth rate dis-

tribution is heavy-tailed, follows asymptotically a student t-distribution, and

in the leading case has an infinite variance, all despite finite variance random

sectoral growth. These findings undermine the popular i.i.d. random growth

models for city sizes.

2E.g. Gabaix (1999a) notes that “A striking pattern of agglomerations is Zipf’s law for
cities, which may well be the most accurate regularity in economics. It appears to hold in
virtually al countries..”, while Krugman (1996, p.4) observes that “we are unused to seeing
regularities this exact in economics - it is so exact that I find it spooky.”, and Córdoba
(2008) observes that “at this point we have no resolution to the explanation of the striking
regularity in city size distribution.”Ioannides and Skouras (2013) conclude that “the Pareto
law of city sizes and its exponent remain spooky!”
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Our empirical analysis is based on a recent administrative panel of sizes

for all cities in Germany. The German case is of interest, since Germany is

the most populous state in Europe, and the highly accurate data, based on

the legal obligation of residents to register with the authorities, constitute

a panel that allows us to study the annual growth process (unlike census-

based data studied in e.g. Eeckhout (2004)). We find strong evidence in our

data for the prediction of the growth model, as well as for a weak version

of Zipf’s law characterizing the right tail of the size distribution while the

strong forms of Zipf’s law are soundly rejected. Not only is the hypothesis of

lognormality rejected by implication as a description of the tail behavior of the

size distribution, a simple test based on normalizing transforms also soundly

rejects lognormality as a description of the main body of the distribution.

2 The City Size Distribution, its Tail Behav-

ior, and Zipf’s Laws

Zipf’s (1949) classic exposition of the rank size rule pertains to the largest

sizes. Thus it is a statement about the tail behavior of the size distribution,

and the weakest form of a Zipf law can be formulated as the hypothesis that

the size distribution has a heavy, regularly varying, right tail which thus decays

like a power function (rather than exponentially fast as would be the case for

lognormally distributed sizes): for large sizes x, the CDF F of sizes is of the

form

FX(x) = 1− L1(x)x−α (1)
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with α > 0 and L1 being a slowly varying function.3 Hence the right tail of

the size distribution is eventually of the Pareto form. Stronger flavors of the

law are the hypothesis that α be unity, or that this power function behavior

not only applies to large sizes but extends over the entire domain (e.g. Gabaix

(1999b) or Córdoba (2008)). We consider the statistical underpinnings of this

hypothesis, in order to conclude that the weak form of the Zipf law naturally

arises when the appropriate statistical theory is considered.

2.1 Tail Behavior: Extreme Value Theory and the Fisher-

Tippett Theorem

The behavior of extreme quantiles and the associated distributional tail is

the subject of extreme value theory, which arises from the classic Fisher-

Tippett theorem (Fisher and Tippett (1928)) about the limit distribution of

the maximum: If, for suitably chosen sequences of norming constants cn and

dn, c−1
n (max(X1, . . . , Xn) − dn) converges in distribution to a non-degenerate

CDF H, then H belongs to one of only three CDFs, namely the Fréchet,

Weibull, or Gumbel. The Gumbel distribution has an upper tail that decays

exponentially fast, whereas the upper tail of the Fréchet distribution follows a

power law.4

Corollaries of the Fisher-Tippett theorem consider maximum domains of

attraction (MDA).5 In particular, the lognormal distribution belongs to the

3Equivalently, the quantile function QX is then QX(1 − 1/x) = L2(x)x1/α with L2

slowly varying. Recall that a function g is called regularly varying at x0 with index θ if
limx→x0

g(tx)/g(x) = tθ with t > 0. If θ = 0, the function is said to be slowly varying.
4The Fréchet distribution is, for x > 0, given by CDF Φα(x) = exp (−x−α), with α as

in equation (1). As x → ∞, we have 1 − Φα(x) = 1 − exp (−x−α) ≈ x−α. The Gumbel
distribution is given by Λ(x) = exp(exp(−x)), and, as x → ∞, 1 − Λ(x) ≈ exp(−x). The
Weibull distribution has a finite upper limit, at which it exhibits a power tail.

5Recall that for CDF F , F ∈ MDA(H) if there exist norming constants such that the
Fisher-Tippett theorem holds for extreme value distributionH. The MDAs are characterized
in Embrechts et al. (1997), Theorems 3.3.7 and 3.3.26.
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MDA of the Gumbel distribution. Whereas if the tail of the city size distribu-

tion is regularly varying with index −α, then it lies in the MDA of the Fréchet

distribution, and for large x we have 1−F (x) = L(x)x−α as stated by equation

(1). The weak form of Zipf’s law thus arises naturally from the appropriate

statistical theory:

Proposition 1 The weak form of Zipf ’s law is not a surprising regularity but

necessary for any thick tailed size distribution.

Hence the often observed empirical regularity for the largest sizes across a wide

range of subjects (see e.g. Mitzenmacher (2003)), including sizes of cities, firms,

and incomes, is not surprising nor “spooky” (Krugman (1996, p.40), Ioannides

and Skouras (2013)), as often claimed in the literature, but rather expected.

We now have a common statistical framework:

Proposition 2 (The weak form of) Zipf ’s law corresponds to the hypothesis

that the city size distribution is in the MDA of the Fréchet distribution, whereas

the (standard) Gibrat view is that it is in the MDA of the Gumbel distribution.

The standard Gibrat and Zipf view are thus incompatible, as they correspond

to one or the other limit distribution. Hence the claim that ‘Gibrat’s law

implies and leads to Zipf’s law’, frequently encountered in the recent literature,

is wrong.

The analysis of the tail properties of the limit distribution can be conducted

in a common estimating framework, since all three limit laws of the Fisher-

Tippett theorem are embedded in the Generalized Extreme Value distribution,

given by

Gα(x) = exp

(
−

[
1 +

1

α

(
x− µ
σ

)−α
+

])
. (2)

α > 0 is the Fréchet case, α→ 0 is the Gumbel case, and α < 0 is the negative

Weibull case. Hence we do not need to impose a particular distributional
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model (such as lognormality, or a power tail6), unlike many contributors to the

city size literature. An estimator of this index α of the Generalized Extreme

Value distribution is proposed in Dekkers, Einmahl and de Haan (1989), and

is discussed in greater detail below in Section 4.1. Hence, the question as to

whether the size distribution has heavy tails or is lognormal can be tested

directly and simply by testing the sign of the estimator of α:

Proposition 3 A test of the city size distribution hypotheses of Proposition

2 is a test of the sign of α.

We defer the implementation of this test on our data to the empirical

Section 4.1 below.

3 The City Growth Rate Distribution

Despite the incompatibility of the standard Gibrat and Zipf views, we now

show how the two can be reconciled in a slightly modified but internally con-

sistent statistical model. Rather than considering a model of random growth

for cities, consider cities composed of sectors that exhibit random growth. We

connect economic activity, measured by the number of sectors, to city size and

agglomeration, a link that has been amply documented in the literature. The

randomness of the numbers of sectors leads to cities of different sizes, and the

average growth rate is a random mean whose invariant distribution we are able

to determine.

Consider then cities composed of economic sectors. The numbers of sectors

Si in city i are random and are related to the size of the city Xi according to

Si = C + λ lnXi + εi, (3)

6Note also that the well-known Hill estimator is not consistent in this general framework.
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where C is a constant, and ε is a mean-zero error term. Empirical evidence

in support of (3) is reported in e.g. Mori et al. (2008, Figures 6 and 7), who

also argue that such a relation is in line with Christaller’s (1966) central place

theory and (a weak form of) the hierarchy principle, which asserts that sectors

(/ industries / goods) found in cities of a given size will also, on average, be

found in cities of larger sizes. For a recent formalization of central place theory

that provides microfoundations see Hsu (2012).

To simplify the exposition, we assume that the error term εi has a density

fε which is symmetric and has bounded support on [−ε, ε]. We introduce

both Gibrat and Zipf features, by assuming that each sector exhibits random

growth (detailed below) and that the city size distribution is heavy-tailed

(empirically verified below), so its distribution function is of the form given

by (1): FX(x) = 1 − L1(x)x−α. Hence the right tail of the size distribution

is eventually of the Pareto form, so ln(Xi) is exponential eventually. We have

the following lemma:

Lemma 1 Under the maintained hypotheses, the distribution of economic sec-

tors is exponential with parameter p ≡ α/λ for large s:

Pr{Si > s} = L3(s) exp(−ps) (4)

where L3 is slowly varying.

The average growth rate Ri of city i is

Ri = S−1
i

Si∑
j=1

rj (5)

where each sector j grows at the random rate rj, with E(rj) = µ and V ar(rj) =

σ2 < ∞. It follows that the average growth rate is the mean of a random

number of summands since Si is random.
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What is the limit distribution of the average growth rate of cities, if it

exists, as the numbers of sectors become large (noting that E(Si) → ∞ as

p → 0) ? The answer is not immediate, since neither classic central limit

theory does apply as we consider a random sum, nor do the classic limit

theorems for random sums apply (e.g. Gnedenko and Korolev (1996)) because

the maintained assumptions differ. However, our next proposition gives the

remarkable answer to our question.

Theorem 1 Under the maintained hypotheses,√
1

p

(
Ri − µ
σ

)
→ T ∼ t2 as p→ 0, (6)

irrespective of the sampling distribution of the individual growth rates rj.

Thus the normalized city size growth rate distribution follows asymptotically

the student t2-distribution. Ri is then distributed for small p approximately

as a scaled t2 variate with scale parameter σp1/2. This scale parameter is

estimable, so, although p is latent, σ and p are jointly identifiable.

We can accommodate small deviations from the statistical model given

by (3) which has implied the exponential distribution of sectors, by assuming

directly that sectors follow a gamma distribution with shape parameter q ap-

proximately equal to 1. In the exact case, we have of course the exponential

distribution; in the neighborhood of 1 we have the same tail behavior, but

allow for small deviations from the exponential density for medium-range sec-

tor numbers. This is attractive, since, like every model, (3) is likely to hold

at best approximately. We can then generalize the above statistical theory as

follows:

Theorem 2 Assume that the distribution of sectors follows eventually a gamma
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distribution with shape parameter q. Then√
q

p

(
Ri − µ
σ

)
→ T ∼ t2q as p→ 0, (7)

irrespective of the sampling distribution of the individual growth rates rj.

The shape parameter q is identified by the degrees of freedom parameter of the

t-distribution, which is estimable. In particular, the EM-algorithm of Scheffler

(2008) enables us not only to estimate the normalization factors µ and p1/2σ,

but also the degrees of freedom parameter df . In the light of (3) we expect

df = 2q to be close to 2 in our data.

As the limit distribution is a t2q-distribution, its properties immediately

yield two important results. First, although random sector growth is conven-

tional and not further specified than having a finite mean and variance, the

average growth rate exhibits power-law behavior, i.e. heavy tails of the limit

distribution obtain even if the sampling distribution has finite variance (which

is in contrast to some limit theorems in extreme value theory which rely on a

Fréchet domain-of-attraction assumption). Second, in the leading case whith

q = 1, its tail is so heavy that its variance is infinite. We collect these results

in:

Corollary 1 The growth rate distribution is heavy-tailed, if q = 1 its variance

is infinite.

This infinite variance invalidates one key hypothesis underlying the standard

version of Gibrat’s Law, i.e. the standard i.i.d. proportional growth model.

We next show that the growth rates will also exhibit medium range tem-

poral dependence. Hence we expect that the assumptions underlying Gibrat’s

law are likely to be invalid in our empirical application below, leading to a

failure of Gibrat’s law and the implied lognormality of the size distribution.
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3.1 Longer Run Growth Rate Distributions

The limit law of Theorem 2 is the basis for the limit law of the growth rate

distribution over longer horizons, such as ten years. Add a time index to the

city size and growth variables and let

Ri,t+1 = log
Xi,t+1

Xi,t

.

Iterating the equation we have

log(Xi,t+1) = logXi,0 +
t∑

τ=0

Ri,τ+1. (8)

Consider the ten-year growth rate. As the number of sectors Si does not change

much from year to year, it constitutes a common component in the vector of the

ten annual growth rates (Ri,1, .., Ri,10). This vector, as a result, approximately

follows a multivariate t-distribution. The sum of ten multivariate t-distributed

random variables is also t-distributed with the same degrees of freedom (Kotz

and Nadarajah (2004)). Thus:

Corollary 2 The ten-year growth rate approximately follows a t2q-distribution.

In the very long run, however, the number of sectors can no longer be regarded

as approximately constant since it grows or shrinks along with the city size.

Hence, for very long horizons, this proposition no longer applies.

The empirical validity of Theorem 2 and Corollary 2 are examined below

in Section 4.2 for our data for German cities. Before turning to this empirical

evidence, we reconsider first the empirical validity of the maintained hypothesis

given by (1) about the city size distribution.
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4 Size and Growth Rates Distributions for all

German Cities

We conduct our statistical analysis using a 12 year panel of administrative

data for all cities covering the years 1995-2006 provided by German Federal

Statistical Office.7 These administrative data are highly accurate due to the

legal obligation of citizens to register with the authorities. The unit of analysis

is the “city”, or more precisely the municipality or settlement (“Gemeinden”).

Population sizes are as of December 31st of each year, and we use a panel of

about 14,000 cities.

We summarize some general features of the size distribution. Only three

cities have more than 1m inhabitants (Berlin, Hamburg, Munich), 12 to 14

cities have more than 0.5m inhabitants, and about 80 cities have more than

0.1m inhabitants. The size evolution for the 15 largest cities is reported in the

data appendix (while there are some changes in their rank order, this group

remains unchanged). The mean number of persons in a city is roughly 6,000.

Figure 1 depicts histograms of the log size distribution of all cities, which

appear fairly stable over time, and look qualitatively similar to other size

distributions for other countries reported in the literature (so there is nothing

“peculiar” about this German data). One conclusion is already obvious: These

distributions are clearly not exponential, so the size distribution cannot be

Pareto over the entire support: the data clearly reject the strongest form of

Zipf’s law.

The histograms also exhibit a distinct skewness, and given the prominence

in the literature of the lognormal hypothesis, it is of interest to examine di-

7Bosker et al. (2006) consider the case of Germany in a different setting: for the largest
62 German cities they consider a long time series (1925-1999), and examine the impact of
the population shock of WWII on subsequent growth rates using time series methods. Since
they examine the largest cities, our Proposition 1 is relevant.
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Figure 1: Histograms of German city sizes
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rectly whether this skewness is compatible with lognormality. To this end we

consider a class of normalizing transformations that nests the lognormal case.

In particular, for city size X, a normalizing transform g seeks to annihilate the

skewness of X, so that the distribution of g(X) is close to normal. The specific

class of transformations we consider is the Box-Cox transformation given by

gβ (x) =

 (xβ − 1)/β for β 6= 0

log(x) for β = 0
(9)

The log-transformation log(X) is thus a special case (β = 0), as is the linear

transformation (β = 1). For β < 0, gβ(x) has an asymptote at |β|−1, and the

normal target density needs to be truncated. The transformation parameter β

is estimable by maximum likelihood, and we can test for lognormality simply

using a Wald test for the transformation parameter β.
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Figure 2: Fitted Size Distributions
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We consider first the representative year 1995. The estimate of the transfor-

mation parameter is−.1262, statistically different from 0, thus clearly rejecting

lognormality. Figure 2 panel 1 depicts the histogram of log sizes and the fitted

normal distribution and thus illustrates the excess skewness of the actual size

distribution. In Panel 2 we illustrate the success of the normalizing Box Cox

transformation which closely matches the normal target density. Turning to

the remaining years, Table 1 reports the estimates for our data. It is clear

that all estimates are significant and negative. All estimates are inconsistent

with the hypothesis of lognormality (β = 0), which is formally confirmed by

Wald tests.

We thus conclude that the skewness in the histograms of Figure 1 is too

excessive to be compatible with lognormality. We now turn our attention from

the main body of the size distribution to its tail behavior.
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Table 1: Estimated Box Cox parameters 1995-2006

Year β̂ SE
1995 -0.1262 0.0063
1996 -0.1245 0.0064
1997 -0.1167 0.0064
1998 -0.1147 0.0065
1999 -0.1074 0.0066
2000 -0.1081 0.0066
2001 -0.0979 0.0067
2002 -0.0928 0.0068
2003 -0.0859 0.0070
2004 -0.0788 0.0070
2005 -0.0764 0.0070
2006 -0.0767 0.0071

4.1 The Tail Behavior of the Size Distribution

A consistent estimator of the index of the generalized extreme value distribu-

tion (2) is proposed in Dekkers, Einmahl and de Haan (1989), and is given

by

α̂ =

(
1 +H

(1)
K,n +

1

2

H
(2)
K,n

(H
(1)
K,n)2 −H(2)

K,n

)−1

, (10)

where H
(i)
K,n are functions of excesses over a threshold

H
(i)
K,n =

1

K

K∑
j=1

(
logX(j) − logX(K+1)

)i
with X(1) ≥ X(2) ≥ . . . ≥ X(K+1) denoting the upper order statistics. H

(1)
K,n

is the popular Hill (1975) estimator, which is inadmissible in our general-

ized setting since it is only consistent for distributions with regular varying

tails, and thus requires pre-testing. The threshold X(K) is chosen optimally

in a data-dependent way by minimizing the asymptotic mean-squared error

(aMSE) criterion. Dekkers et al. (1989, theorem 3.1) show that α̂ follows
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asymptotically a normal distribution. For completeness, we also compute the

consistent estimator proposed in Smith (1987) which is based on a likelihood

approach.

Table 2: Estimates of the Tail Index α̂
Dekkers et al. Smith Hill

Year SE SE SE
1995 1.321 (0.020) 1.423 (0.038) 1.313 (0.025)
1996 1.323 (0.020) 1.426 (0.038) 1.316 (0.025)
1997 1.325 (0.020) 1.435 (0.038) 1.320 (0.025)
1998 1.325 (0.020) 1.429 (0.038) 1.318 (0.025)
1999 1.330 (0.020) 1.431 (0.038) 1.323 (0.025)
2000 1.330 (0.019) 1.420 (0.038) 1.324 (0.025)
2001 1.329 (0.019) 1.418 (0.039) 1.324 (0.025)
2002 1.330 (0.020) 1.426 (0.038) 1.324 (0.025)
2003 1.313 (0.021) 1.390 (0.040) 1.303 (0.026)
2004 1.313 (0.021) 1.390 (0.040) 1.303 (0.026)
2005 1.313 (0.021) 1.390 (0.040) 1.303 (0.026)
2006 1.313 (0.021) 1.390 (0.040) 1.303 (0.026)

Table 2 reports the results. For all years, the Dekkers et al. estimator (10)

is statistically different from 0, so the tail of the size distribution is always

heavy. At the same time, the index estimate is statistically different from unity

(the value in a strong version of Zipf’s law), and very stable over time. The

Smith estimator is comparable, as is the now admissible Hill estimator (given

this pre-testing). All estimates are coherent, in the sense that all pairwise

difference-of-means tests by columns do not reject the null hypothesis that the

row estimates are the same (the size of the overall test is controlled by applying

the Bonferroni correction to the sizes of the individual tests, and we ignore the

positive correlation between the estimates, so the overall test is conservative).

The mean of the tail index estimate across all estimates equals 1.35. As this

average value is smaller than 2 this implies that the tails are very heavy: the

second and higher moments of the size distribution do no exist.
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Figure 3: Hill Plot Analysis
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4.1.1 Robustness Considerations

In view of the stability of the tail index estimates, and the admissibility of the

Hill estimator, we briefly consider the robustness of the estimate with respect

to the threshold choice for the representative year 1995. Figure 3 depicts

the Hill plot (k,H
(1)
k,n). The Hill estimate is very stable for threshold values

1000 to 1500, and Kopt = 1413 minimizes the asymptotic mean squared error

(computed using the second order approach detailed in Beirlant et al. (2004))

depicted in panel 2. For this threshold Panel 3 of the figure depicts the QQ

plot of the log excesses versus the standard exponential distribution, as well
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as a line with slope H
(1)
1413,n. 8 The model fits the data well.

Another robustness concern might be that the tail index estimate is driven

by the largest city, Berlin, which, being the capital, might be structurally

unrepresentative. More generally, we can investigate whether the sizes of the j

largest cities are compatible with the sizes of the next few largest cities. We do

this by conducting the outward testing procedure for heavy-tailed distributions

proposed in Schluter and Trede (2008). We find that neither the size of Berlin,

nor of any other of the largest 15 cities, is incompatible with the overall power

tail behavior.9

4.2 The Growth Rate Distribution

We turn to an examination of the growth rate distribution, noting that the

established power tail behavior of the size distribution verifies the empirical

relevance of one of the maintained hypotheses of Theorem 1. As the theory

only requires that the size distribution exhibits a power-function behavior

eventually, we ensure that we are approximately in the Pareto tail of the city

size distribution, by first examining the Pareto plot of log(1− F̂ (x)) on log(x)

and identifying visually the city size for which the plots starts to become

approximately linear. In our case, this leads us to consider the largest 5300

cities.

The generalized limit Theorem 2 has two aspects. First, the limit distribu-

tion of growth rates is a student t-distribution. Second, its degrees of freedom

parameter df equals 2q, and the model (3) suggests q to be approximately one.

Consider then first the shape of the growth rate distribution. Figure 4 Panel

A depicts the histogram of the annual growth rates for the representative years

8To see this, consider the quantile function U(x) ≡ QF (1 − 1/x). We have logU(x) →
α−1 log x. Let p ∈ (0, 1), and consider pn ' p such that j = (n + 1)(1 − pn) is an integer.
Then the log quantile excess satisfy logU((n+1)/j)− logU((n+1)/(k+1))→ α−1(log(k+
1)− log(j)), and are approximated by the log excesses logX(j) − logX(k+1).

9Full details are available from the authors on request.
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1995/6, as well as the fitted scaled td̂f density, having used Scheffler’s (2008)

EM-algorithm to estimate (µ, p1/2σ, df). In Panel C of this figure, we consider

the ten year growth rate 1995/2005, the subject of Corollary 2. The t-densities

fit the data well.

Next, we turn to the degrees of freedom parameter df = 2q. The point

estimates are reported in Table 3 Panel A. Most estimates suggest a neigh-

borhood of q = 1. Rather than taking a “global” approach to estimating q

using all data, an alternative local approach is to consider the tail index of

the growth rate distribution. The theoretical t2q distribution is, of course,

heavy-tailed and has a tail index of 2q. Under this hypothesis, the Hill es-

timator becomes available, and the estimates are reported in Panel B of the

table, while Panels B and D of Figure 4 depict the Hill plots (including a 95%

pointwise confidence band) for the annual and ten-year growth rates. The

tail index estimates equally suggest that q is in the neighborhood of 1. We

conclude, overall, despite some statistical departures from the focal df and tail

index value of 2, that the tqr distribution with q approximately one fits the

actual growth rate distribution well for all years.

5 Conclusion

We have argued that extreme value theory establishes that the Gibrat and

the Zipf view about the tail behavior of the city size distribution are incom-

patible as they correspond to two different limit distributions of the Fisher-

Tippett theorem. Which hypothesis is empirically relevant has been shown

to be testable in an encompassing framework based on the estimate of the

index of the generalized extreme value distribution. The empirical evidence

in our data for power-tail behavior, i.e. the weakest form of Zipf’s law, is

overwhelming, as is the evidence against lognormality.
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Figure 4: One year and ten year city size growth rates: histograms, the fitted
scaled t-distributions, and tail index analysis.
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Apart from this tail analysis of the size distribution, we have also exam-

ined separately its main body, specifically since the distinction between tail

and main body restrictions at times gets ignored in the debate centred around

Zipf’s law. Using normalizing transforms, lognormality is also rejected as an

adequate description of the main body of the size distribution. Nor does

Pareto behavior extend over the entire support. Both these empirical observa-

tions thus falsify, at least for this data, some current microeconomic theories

yielding one or the other completely specified size distribution. By contrast,

the observed empirical regularity, and the associated statistical limit theory,
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Table 3: The growth rate distribution and parameter estimates for the student
t distribution

A B
µ SE p1/2σ SE df SE tail index analysis

[×103] [×103] [×102] [×102] Hill SE k
1995/96 5.300 0.177 1.031 0.017 2.741 0.112 1.987 0.066 896
1996/97 3.813 0.174 0.997 0.017 2.519 0.097 1.864 0.068 756
1997/98 3.258 0.173 1.005 0.017 2.745 0.112 1.985 0.073 732
1998/99 4.014 0.166 0.904 0.016 1.817 0.055 1.337 0.035 1500
1999/00 2.541 0.165 1.014 0.017 3.985 0.224 3.035 0.192 251
2000/01 3.168 0.156 0.925 0.015 3.156 0.138 2.125 0.073 840
2001/02 1.879 0.148 0.876 0.014 3.122 0.139 1.978 0.073 734
2002/03 -0.151 0.134 0.768 0.012 2.532 0.093 1.487 0.048 977
2003/04 -0.543 0.130 0.750 0.012 2.667 0.102 1.533 0.050 935
2004/05 -2.112 0.134 0.795 0.012 3.258 0.143 1.667 0.068 610
2005/06 -4.022 0.128 0.780 0.012 3.987 0.207 1.861 0.094 394
1995/05 31.073 1.089 6.231 0.110 2.370 0.088 1.715 0.050 1174

pertain only to the largest cities.

However, a slightly modified statistical model reconciles the Gibrat and

Zipf view: we have proposed a model of Gibrat-like random growth of sectors,

whose random number is linked to Zipf-like city size by Christaller’s central

place theory. The invariant growth rate distribution implied by our statistical

model has been shown to fit our data for German cities well.
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B Mathematical Appendix

Proof of Lemma 1. Under the stated assumptions we have

Pr(S > s) =

∫ ε̄

−ε̄
P

(
X > exp

(
1

λ
(s− C − ε)

))
fε(ε)dε

=

∫ ε̄

−ε̄
L

(
exp

(
1

λ
(s− C − ε)

))
exp

(
−α
λ

(s− C − ε)
)
fε(ε)dε

= L2 (s) exp
(
−α
λ
s
)∫ ε̄

0

exp
(α
λ
ε
)
fε(ε)dε

= L3(s) exp
(
−α
λ
s
)

where L2 and L3 are slowly varying functions.

The proof of Theorems 1 and 2 invokes the following limit theorem:

Theorem 3 Let r1, r2, . . . be a sequence of i.i.d. random variables with E(rk) =

0 and finite variance V ar (rk) = σ2 <∞ for k ∈ N. Let ν have a negative bino-

mial distribution, independent of the ri, with parameters q > 0 and 0 < p < 1.

Define the random mean of a random number ν of draws as r̄p = ν−1
∑ν

k=1 rk.

Then as p→ 0, √
q

p
· r̄p → T ∼ t2q. (11)

Proof of Theorem 1 and 2. The geometric distribution is the discrete

counterpart of the exponential distribution of Lemma 1, and the geometric

distribution is a special case of the negative binomial distribution, and follows

with q = 1. Hence the claim of Theorem 1 follows from Theorem 3. Similarly,

the negative binomial distribution is the discrete counterpart of the gamma

distribution, which establishes Theorem 2.

For the proof of Theorem 3, we set, without loss of generality, σ2 = 1, and

establish first the following result:
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Lemma 2 As p → 0, the random variates pν and
√
νr̄p are asymptotically

independent.

Proof. Consider the joint survival function

P
(
pν > t,

√
νr̄p > x

)
= P

(
ν >

t

p
,
√
νr̄p > x

)
=

∑
n>t/p

P
(
ν = n,

√
nr̄p > x

)
.

Since ν and r1, r2, . . . are independent, the joint probability can be factored as

∑
n>t/p

P
(
ν = n,

√
nr̄p > x

)
=

∑
n>t/p

P (ν = n)P
(√

nr̄p > x
)

=
∑
n>t/p

P (ν = n) Φ̄(x)

+
∑
n>t/p

P (ν = n)
[
P
(√

nr̄p > x
)
− Φ̄(x)

]
.

where Φ̄ is the survival function of the standard normal distribution. We now

show that the last sum converges to zero as p→ 0,

∑
n>t/p

P (ν = n)
[
P
(√

nr̄p > x
)
− Φ̄(x)

]
≤

∑
n>t/p

P (ν = n) sup
x

∣∣P (√nr̄p > x
)
− Φ̄(x)

∣∣ . (12)

Since

P (ν = n) <
1

(r − 1)!

(
np

1− p

)r
(1− p)n

it is immediate that

P (ν = n) <
p

n
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for given p and sufficiently large n. Then

lim
p→0

∑
n>t/p

P (ν = n) sup
x

∣∣P (√nr̄p > x
)
− Φ̄(x)

∣∣
≤ lim

p→0
p
∑
n>t/p

1

n
sup
x

∣∣P (√nr̄p > x
)
− Φ̄(x)

∣∣ . (13)

According to theorem 7.8 in Gut (2005)

∞∑
n=1

1

n
sup
x

∣∣P (√nr̄p > x
)
− Φ̄(x)

∣∣ <∞,
so (13) converges to 0. It follows that

∑
n>t/p

P (ν = n)P
(√

nr̄p > x
)
→

∑
n>t/p

P (ν = n) · Φ̄ (x)

= Φ̄ (x)
∑
n>t/p

P (ν = n)

= Φ̄ (x) · P (pν > t) .

Hence, the joint probability can be factorized asymptotically, and pν and
√
νr̄p

are asymptotically independent.

Proof of Theorem 3. Rewrite√
q

p
· r̄p =

√
2q

2pν
·
√
νr̄p.

Conditioning on ν it is evident that
√
νr̄p is asymptotically N(0, 1) as p→ 0.

In addition, for p→ 0, the random variable 2pν converges weakly to V ∼ χ2
2q.

According to the preceding lemma,
√

2q/(2pν) and
√
νr̄p are asymptotically

independent. Hence, as p→ 0

√
q

p
· r̄p →

√
2q

V
U
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where U ∼ N(0, 1) and V ∼ χ2
2q are independent. Since

√
2q
V
U ∼ t2q we

conclude that the normalized mean converges weakly to a t-distribution with

2q degrees of freedom.
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