

Forecasting Inflation Uncertainty in the G7 Countries

Mawuli Segnon⁺, Stelios Bekiros[#] and Bernd Wilfling⁺

71/2018

⁺ Department of Economics, University of Münster, Germany

[#] Department of Acc. & Finance, AUEB, Athens, Greece and Department of Economics, European University Institute, Florence, Italy

wissen.leben WWU Münster

Forecasting Inflation Uncertainty in the G7 Countries

MAWULI SEGNON

Westfälische Wilhelms-Universität Münster, Department of Economics (CQE), Germany

STELIOS BEKIROS*

Department of Acc. & Finance, AUEB, Athens, Greece, & Department of Economics, European University Institute, Florence, Italy

and

Bernd Wilfling Westfälische Wilhelms-Universität Münster, Department of Economics (CQE), Germany

Abstract: There is substantial evidence that inflation rates are characterized by long memory and nonlinearities. In this paper, we introduce a long-memory Smooth Transition AutoRegressive Fractionally Integrated Moving Average-Markov Switching Multifractal specification [STARFIMA(p, d, q)-MSM(k)] for modeling and forecasting inflation uncertainty. We first provide the statistical properties of the process and investigate the finite-sample properties of the maximum likelihood estimators through simulation. Second, we evaluate the out-of-sample forecast performance of the model in forecasting inflation uncertainty in the G7 countries. Our empirical analysis demonstrates the superiority of the new model over the alternative STARFIMA(p, d, q)-GARCH-type models in forecasting inflation uncertainty.

Keywords Inflation uncertainty, Smooth transition, Multifractal processes, GARCH processes

JEL classification C22, E31

^{*}Corresponding author: Stelios Bekiros, Department of Economics, European University Institute, Florence, Italy. E-mail: stelios.bekiros@eui.eu.

1 Introduction

The financial crisis of 2007-2009 and the long-lasting economic recovery has renewed the interest in studying and measuring inflation uncertainty. Studies by Baker et al. (2015) and Jurado et al. (2015), for example, discuss new approaches to defining and measuring inflation, and more generally, macroeconomic uncertainty. Theoretical and empirical studies indicating that uncertainty negatively affects economic growth are well-documented in the literature (see Bernanke, 1983; Bloom, 2009; Stock and Watson, 2011; Bloom, 2014; Henzel and Rengel, 2017). In this context, Stock and Watson (2011) find that liquidity-risk and uncertainty shocks account for about two thirds of the US GDP decline during the Great Recession. Bloom (2014) and Henzel and Rengel (2017) provide evidence for countercyclical behavior of uncertainty. Gurkaynak and Wright (2012) and Wright (2011) argue that inflation uncertainty may explain the behavior of bond risk premia, and thus, plays a major role in understanding the different effects of monetary policy on short- and long-term interest rates. As stressed in Goodhart (1999) and Greenspan (2003), effective monetary policy purposes prevail reliable, easy-to-update, and accurate measures of inflation uncertainty.

In spite of being inherently unobservable, inflation uncertainty can be estimated from econometric models. One of the most frequently used approaches to measuring inflation uncertainty consists of applying Engle's (1982) AutoRegressive Conditional Heteroscedasticity (ARCH) processes and their generalized variants. These models are motivated by stylized facts on inflation uncertainty, in particular *volatility clustering, high persistence*, and *asymmetry* (see, among others, Baillie et al., 1996; Fountas et al., 2004; Karanasos and Schurer, 2008; Caporale et al., 2012; Clements, 2014; Makarova, 2018). The popularity of GARCH-type models stems from their formal simplicity, flexibility, low computational costs, and their capacity to reproduce clustering effects. However, thorough investigations reveal that alternative inflation-uncertainty measures (distinct absolute powers of inflation rates) typically exhibit structural dynamics and persistence patterns that GARCH-type models cannot reproduce. This leads to the question as to which econometric models may be appropriate for modeling (and producing accurate measures of) inflation uncertainty.

In this paper, we consider a new modeling approach by combining longmemory Smooth Transition AutoRegressive Fractionally Integrated Moving Average (STARFIMA) specifications with Markov Switching Multifractal (MSM) models, as recently developed by Calvet and Fisher (2004). MSM processes represent an alternative tool for modeling and forecasting volatility in financial and commodities markets, which regularly outperform GARCH-type models in out-of-sample forecasting evaluations (see Lux et al., 2016; Wang et al., 2016; Segnon et al., 2017). Owing to its formal construction, MSM models properly reproduce the structural dynamics observed in different absolute powers of inflation rates.²

The rest of the paper is organized as follows. Section 2 introduces the STARFIMA-MSM model. The statistical properties of the model are established in Section 3. Section 4 briefly outlines maximum likelihood estimation and optimal forecasting. Section

²See Lux and Segnon (2018) for details on the genesis and alternative applications of multifractal processes in finance.

5 presents the data analysis for the G7 countries, forecasting methodologies and the empirical results. Section 6 concludes.

2 The STARFIMA(p, d, q)-MSM(k) model

We define the STARFIMA(p, d, q)-MSM(k) model to be a discrete-time stochastic process { x_t } satisfying the equation

$$\Phi_{s_t;\eta}(\mathbf{L})(1-\mathbf{L})^d x_t = \Theta(\mathbf{L})\epsilon_t,\tag{1}$$

where $\epsilon_t | \Omega_{t-1} \sim N(0, h_t)$ and

$$h_t = \sigma^2 \prod_{j=1}^k M_t^{(j)}.$$
 (2)

In Eqs. (1) and (2), L denotes the lag operator and Ω_{t-1} is the σ -field generated by the information set $\{\epsilon_{t-1}, \epsilon_{t-2}, \ldots\}$. The lag polynomials are defined as $\Phi_{s_t;\eta}(L) = 1 - \phi_1(s_t;\eta_1)L - \cdots - \phi_p(s_t;\eta_p)L^p$, where the *p* autoregressive coefficients $\phi_i(s_t,\eta_i) = \phi_{i0} + \phi_{i1}G(s_t;\tau,c)$ are nonlinear functions of the state variable s_t . $\eta_i = (\phi_{i0}, \phi_{i1}, \tau, c)'$ is a vector of parameters, and $\Theta(L) = 1 + \theta_1L + \cdots + \theta_qL^q$. $d \in (-0.5, 0.5)$ is a real number and $(1 - L)^d$ is the fractional differencing operator given by

$$(1-L)^d = \sum_{j=0}^{\infty} \frac{\Gamma(j-d)L^j}{\Gamma(-d)\Gamma(j+1)},$$
(3)

where $\Gamma(\cdot)$ denotes the gamma function.

In Eq. (2), $M_t^{(1)}, M_t^{(2)}, \ldots, M_t^{(k)}$ denote the random volatility components (called multipliers). At date *t*, each multiplier $M_t^{(j)}$ is drawn from the base distribution *M* (to be specified) with positive support. Depending on its rank within the hierarchy of multipliers, $M_t^{(j)}$ changes from one period to the next with probability γ_j and remains unchanged with probability $1 - \gamma_j$. We specify these transition probabilities as

$$\gamma_j = 2^{j-k}, \qquad j = 1, \dots, k, \tag{4}$$

so that the transition matrix related to the *j*th multiplier is given by

$$\mathbf{P}_j = \begin{pmatrix} 1 - 0.5\gamma_j & 0.5\gamma_j \\ 0.5\gamma_j & 1 - 0.5\gamma_j \end{pmatrix}.$$

In this paper, we draw each multiplier $M_t^{(j)}$ (in case of a change) from a binomial distribution with support $\{m_0, 2 - m_0\}, 1 < m_0 < 2$, and (binomial) probability 0.5, implying the unconditional expectation $\mathbb{E}(M_t^{(j)}) = 1$. If we assume stochastic independence among the multipliers, the transition matrix of the vector $\mathbf{M}_t \equiv (M_t^{(1)}, \dots, M_t^{(k)})'$ becomes the $2^k \times 2^k$ matrix $\mathbf{P} = \mathbf{P}_1 \otimes \mathbf{P}_2 \otimes \cdots \otimes \mathbf{P}_k$, where \otimes denotes the Kronecker product. Using the binomial base distribution for the single multipliers implies the finite support $\Gamma \equiv \{m_0, 2 - m_0\}^k$ for \mathbf{M}_t .

Remark. The stochastic process in Eq. (1) can be viewed as a special case of the model proposed by Hillebrand and Medeiros (2016) with constant conditional variance and multiple regimes. The process reduces to the linear AutoRegressive Fractionally Integrated Moving Average (ARFIMA) model, when setting $\phi_i(s_t, \eta_i) = \phi_i$, i = 1, ..., p. In this paper, we consider only two regimes, since this turns out to be sufficient in our empirical application below. We allow the conditional variance in Eq. (2), which we model as the product of the time-varying multipliers and the positive scaling factor σ^2 , to vary over time (see Calvet and Fisher, 2004). As the transition function, we specify the firstorder logistic function, $G(s_t; \tau, c) = (1 + \exp\{-\tau(z - c)\})^{-1}, \tau > 0$, which is arbitrarily often differentiable and satisfies $\lim_{s_t\to-\infty} G(s_t; \tau, c) \to 0$ and $\lim_{s_t\to+\infty} G(s_t; \tau, c) \to 1$. For $\tau \to +\infty$ the function $G(s_t; \tau, c)$ approaches the indicator function $\mathbf{1}(s_t > c)$. The parameter τ regulates the smoothness of the transition from one regime to another (cf. van Dijk et al., 2002).

Remark. The transition probabilities defined in Eq. (4) have been proposed by Lux (2008). This specification reduces the number of parameters to be estimated and enables us to obtain some statistical properties of the model. In Calvet and Fisher (2001) the k transition probabilities are specified as $\gamma_j = 1 - (1 - \gamma_1)^{(b^{j-1})}$ with $\gamma_1 \in (0, 1)$ and b > 1, what guarantees the convergence of the discrete-time MSM model to the Poisson multifractal process in the continuous-time limit. Calvet and Fisher (2004) assume binomial and log-normal base distributions for the multipliers. Liu et al. (2007) find that assuming other base distributions, such as lognormal and gamma, makes little difference in empirical applications.

Our Markov-Switching Multifractal (MSM) volatility process as specified in Eqs. (2) and (4) could alternatively be specified as a GARCH-type process. In our out-of-sample forecasting analysis below, we compare the performance of our STARFIMA(p, d, q)-MSM(k) model to that of a number of STARFIMA(p, d, q)-GARCH-type processes. He and Terasvirta (1999) propose a general class of GARCH(1, 1) models of the form

$$h_t^{\delta} = g(u_{t-1}) + c(u_{t-1})h_{t-1}^{\delta},$$
(5)

with $Pr(h_t^{\delta} > 0) = 1$, $\delta > 0$, and where $\{u_t\}$ is a sequence of i.i.d. standard normal random variables, and g(x), c(x) are nonnegative functions. This class of GARCHtype models includes, among others, the specifications of Bollerslev (1986) (standard GARCH), Glosten et al. (1993) (GJR-GARCH), Nelson (1991) (EGARCH), Sentana (1995) (QGARCH), and Ding et al. (1993) (APARCH).

3 Statistical properties

In this section, we consider statistical properties of the STARFIMA(p, d, q)-MSM(k) and the general STARFIMA(p, d, q)-GARCH-type processes, as defined in Section 2.

Assumption 1. The roots of the characteristic polynomials $\Phi_{s_t;\eta}(L)$ and $\Theta(L)$ lie outside the unit circle and the logistic transition function $G(s_t; \tau, c)$ is well-defined.

Assumption 2. The volatility components $M_t^{(1)}, M_t^{(2)}, \ldots, M_{(t)}^k$ with $\mathbb{E}(M_t^{(1)}) = \ldots \mathbb{E}(M_t^{(k)}) = 1$ are nonnegative and independent of each other for all t, and for the transition probabilities, we have $\gamma_1, \ldots, \gamma_k \in (0, 1)$.

Proposition 1. Under Assumptions 1 and 2, the STARFIMA(p, d, q)-MSM(k) model defined in Eqs. (1) to (4) has a unique, second-order stationary solution. It follows that $\{x_t\}, \{\epsilon_t\}, \{h_t\}$ are strictly stationary, ergodic and invertible.

Proof. Under Assumption 2, the conditions of Theorem 1 in (Shiryaev, 1995, pp. 118) are satisfied. It follows that the Markov chain underlying the dynamics of the multipliers $M_t^{(1)}, \ldots, M_t^{(k)}$ is geometrically ergodic. The probabilities of the ergodic distribution are given by $\pi_l = 1/2^k$, $l = 1, \ldots, 2^k$. Under Assumptions 1 and 2, $\{x_t\}, \{\epsilon_t\}, \{h_t\}$ are strictly stationary, ergodic and invertible.

Proposition 2. Under Assumption 1, the STARFIMA(p,d,q)-GARCH model specified in Eqs. (1), (3), and (5) has a unique, $\alpha\delta$ -order stationary solution (α a positive integer). It follows that { x_t }, { ϵ_t }, { h_t } are strictly stationary, ergodic and invertible.

Proof. The proof follows from Assumption 1 and the conditions in Theorem 2.1 of Ling and McAleer (2002a), where we replace the constant mean process with our stationary STARFIMA(p, d, q) process from Eqs. (1) and (3).

Proposition 3. Under Proposition 1 and with m denoting a positive integer, it follows that the 2m-th moments of $\{x_t\}, \{\epsilon_t\}$ are finite.

Proof. The proof follows from Proposition 1 and the conditions in Theorem 1 in Shiryaev (1995, pp. 118).

Proposition 4. Under Proposition 2, it follows that the $m\delta$ -th moments of $\{x_t\}, \{\epsilon_t\}$ exist.

Proof. The proof follows from Proposition 2 and Theorem 2.2 in Ling and McAleer (2002a).

Remark. Second moments and autocovariances of the MSM(k) process for binomial and lognormal base distributions of the multipliers are given in Lux (2008). As argued in Ling and McAleer (2002a), Proposition 4 cannot easily be extended to higher-order generalized GARCH processes, as specified in Eq. (5). However, Ling (1999) provides a sufficient condition for the existence of 2m-th moments for the standard GARCH(p, q) process. Ling and McAleer (2002b) establish necessary and sufficient higher-order moment conditions for standard GARCH(p, q) and APARCH(p, q) processes.

Next, we present results for (i) the autocorrelation function of the process $\{x_t\}$ from Eq. (1), which we denote by $\rho(n) = \text{Cov}(x_t, x_{t-n})/\text{Var}(x_t)$, and (ii) the *q*-order autocorrelation function of the process ϵ_t denoted by $\rho_q(n) = \text{Cov}(|\epsilon_t|^q, |\epsilon_{t-n}|^q)/\text{Var}(|\epsilon_t|^q)$, for every moment *q* and every integer *n*. For this purpose, we consider the two arbitrary numbers $\kappa_1, \kappa_2 \in (0, 1), \kappa_1 < \kappa_2$, which we use to define the following set of integers (as before, *k* denotes the number of volatility multipliers in Eq. (2)): $S_k = \{n : \kappa_1 k \le \log 2(n) \le \kappa_2 k\}$. It is easy to check that S_k contains a wide range of intermediate lags.

Proposition 5. Under Assumption 1, we have $\rho(n) \sim c|n|^{2d-1}$ as $n \to \infty$, where c is a real constant.

Proof. The proof follows from Proposition 2 and Theorem 2.4 in Hosking (1981).

Proposition 6. Under Assumption 2, it follows that $\ln \rho_q(n) \sim -\psi(q) \ln n$ as $k \to \infty$, where $\psi(q) = \log_2\left(\frac{\mathbb{E}(M^{q/2})}{[\mathbb{E}(M^{q/2})]^2}\right)$. (*M* is a random variable distributed as the base distribution of the multipliers $M_t^{(1)}, \ldots, M_t^k$.)

Proof. The proof follows from Proposition 2 and the proof of Proposition 1 in Calvet and Fisher (2004).

Remark. *MSM* processes only exhibit apparent long memory with asymptotic hyperbolic decay in the autocorrelation of absolute powers over a finite horizon. This does not coincide with the traditional definition of long memory with asymptotic power-law behavior of the autocorrelation function in the limit or divergence of the spectral density (see Beran, 1994).

4 Maximum likelihood estimation and optimal forecasting

4.1 Maximum likelihood estimation

Hillebrand and Medeiros (2016) suggest using Nonlinear Least Squares (NLS) for parameter estimation of the STARFIMA model. We collect all parameters of the STARFIMA specification in the vector χ and denote (i) an approriately defined subset of the parameter space by Ξ , and (ii) the true parameter vector by χ_0 . Then, for a sample of T observations, the NLS estimator is given by

$$\widehat{\chi} = \arg\min_{\chi \in \Xi} \sum_{t=1}^{T} \epsilon_t^2.$$
(6)

In the case of normally distributed innovations ϵ_t , NLS is equivalent to Maximum Likelihood Estimation (MLE), whereas for non-normal innovations NLS can be interpreted as Quasi MLE (QMLE). Wooldridge (1994), Pötscher and Prucha (1997) and Hillebrand and Medeiros (2016) show that the NLS estimator is consistent and asymptotically normal under appropriate regularity conditions. Li and McLeod (1986) derive asymptotic properties of the MLE for the ARFIMA processes, and a portmanteau test for checking model adequacy.

Proposition 7. Let $\widehat{\chi}$ be the solution the minimization problem (6). Under Assumption 1, it follows that $\widehat{\chi}$ is (i) a consistent estimator of χ_0 , and (ii) asymptotically normal.

Proof. Under Assumption 1, the conditions of Theorems 1 and 2 in Hillebrand and Medeiros (2016) are satisfied, yielding the proof.

Using a binomial base distribution for the k multipliers, Calvet and Fisher (2004) derive a closed-form solution for the log-likelihood and exact ML estimators of the parameters in the MSM(k) model. In fact, discrete base distributions with positive support

for the multipliers imply a finite number of states for the hidden Markov process in the MSM model. This allows us to derive the exact likelihood function via Bayesian updating. For pre-specified k, it is known that the MLE is consistent and asymptotically efficient.

Since the off-diagonal blocks in the information matrix of a STARFIMA(p, d, q)-MSM(k) model are zero, the parameters in the STARFIMA(p, d, q) and MSM(k) specifications can be estimated separately, without asymptotic efficiency loss (see Lundbergh and Terasvirta, 1999). Therefore, in a first stage, we estimate the conditional mean via NLS, thus providing consistent estimates of the ϵ_t 's, which we use in the second stage to estimate the parameters of the conditional variance from the specification

$$\widehat{\epsilon_t} = u_t \sqrt{h_t}.$$
(7)

Denoting the parameter vector by $\boldsymbol{\xi} = (m_0, \sigma)'$ (defined on a compact subset of the parameter space), we obtain the parameters in the second stage by maximizing the log-likelihood

$$\widehat{\boldsymbol{\xi}} = \arg \max_{\boldsymbol{\xi}} \sum_{i=1}^{T} \ln \left[\boldsymbol{\omega}(\widehat{\boldsymbol{\epsilon}_{t}}; \boldsymbol{\xi}) \left(\pi_{t-1} \mathbf{P} \right) \right].$$
(8)

In Eq. (8), $\omega(\hat{\epsilon}_t; \boldsymbol{\xi})$ is a 1×2^k vector containing the conditional densities of any observation $\hat{\epsilon}_t$ given by

$$f(\widehat{\epsilon}_t | \mathbf{M}_t = \mathbf{m}_j) = \frac{1}{h(\mathbf{m}_j)} \phi\left(\frac{\widehat{\epsilon}_t}{h(\mathbf{m}_j)}\right),\tag{9}$$

where $\phi(\cdot)$ denotes the standard normal density and $h(\mathbf{m}_j) = \sigma \sqrt{\prod_{i=1}^k m_j^{(i)}}$ with $m_j^{(i)}$ being the *i*-th element of vector \mathbf{m}_j . The transition matrix **P** has the components $p_{i,j} = \Pr(\mathbf{M}_{t+1} = \mathbf{m}^j | \mathbf{M}_t = \mathbf{m}^i)$. \mathbf{M}_t is latent, but we can recursively compute the conditional probabilities $\pi_t^i = \Pr(\mathbf{M}_t = \mathbf{m}^i | \widehat{\epsilon_t}, \dots, \widehat{\epsilon_1})$ through Bayesian updating as

$$\pi_t = \frac{\omega(\widehat{\epsilon}_t; \boldsymbol{\xi}) \cdot (\pi_{t-1} \mathbf{P})}{\sum \omega(\widehat{\epsilon}_t; \boldsymbol{\xi}) \cdot (\pi_{t-1} \mathbf{P})}.$$
(10)

Proposition 8. Let $\vartheta = (\chi', \xi')'$ denote the complete parameter vector of the STARFIMA(p, d, q)-MSM(k) model. Under Assumptions 1 and 2 and Propositions 3 and 4, there exists an MLE $\widehat{\vartheta}$ that is consistent and asymptotically efficient.

Proof. Under the given assumptions the conditions of Theorem 1 in Hillebrand and Medeiros (2016) are met, yielding the proof.

Remark. The shortcoming of the exact MLE is that it becomes computationally demanding for a large number of multipliers (k > 10). Furthermore, a continuous base distribution with positive support for the multipliers implies an infinite state space of the hidden Markov chain, so that the MLE is not applicable. To circumvent these issues, Lux (2008) proposes a generalized method-of-moments estimator with linear forecasting. Recently, Žikeš et al. (2017) establish the Whittle estimation approach. In Section 4.3, we show that numerical optimization of the MSM(k) log-likelihood function produces satisfactory results for a moderate number of volatility components.

4.2 Optimal forecasting

Using the maximum likelihood estimation approach, we easily obtain volatility forecasts in the MSM(k) model via Bayesian updating of the conditional probabilities. The *h*-step-ahead volatility forecasts of the MSM(k) model are given by

$$\mathbb{E}(h_{t+h}|\Omega_t) = \hat{\sigma}^2 \prod_{j=1}^k \mathbb{E}(M_{t+h}^{(j)}|\Omega_t).$$
(11)

In fact, to produce volatility forecasts over arbitrary, long-term horizons as given in Eq. (11), we need the conditional probabilities of future multipliers. These conditional state probabilities can be iterated forward via the transition matrix **P** as follows:

$$\widehat{\pi}_{t,t+h} = \pi_t \mathbf{P}^h. \tag{12}$$

For GARCH-type models the formula for the h-step-ahead volatility forecasts are available in the literature (see, for example, Lux et al., 2016, Appendix A).

4.3 Monte Carlo simulation

We assess the robustness of the MLE in small samples via Monte Carlo simulations. We choose the number of volatility components as k = 8, which turns out to be optimal in our empirical application below.³ As the base distribution, we consider a binomial distribution taking on the values m_0 and $2 - m_0$ each with probability 0.5. Along with the switching probabilities from Eq. (4), our simulation of the MSM model only requires two parameters: the binomial parameter m_0 and the scale factor (unconditional standard deviation) σ , which we normalize to unity. We simulate 500 independent sample paths of our restricted MSM model for (i) the three different binomial parameters $m_0 \in \{1.1, 1.2, 1.3\}$, and (ii) for the three different sample sizes $T \in \{250, 500, 1000\}$.

Table 1 about here

Table 1 reports the Monte Carlo maximum likelihood estimation results for small sample sizes. The first two rows provide the average bias and the mean squared error (MSE) of the parameter estimates, relative to the true parameters. The results of the ML estimation appear reasonable and exhibit a decrease in the MSEs with increasing sample size T. From $T_1 = 250$ to $T_2 = 500$, the MSEs decrease roughly with a factor of about 2. Overall, our Monte Carlo simulation demonstrates that ML estimation produces reliable results.

Table 2 about here

³Technical details on the determination of the optimal number of multipliers are available upon request.

Next, we analyze the capacity of the MSM model for reproducing the statistics of empirical data. We first estimate the binomial parameter m_0 and the scaling factor σ^2 for each G7 country and then use the parameter estimates to simulate 500 independent sample paths with country-specific sample sizes corresponding to those from the empirical data. The country-specific averaged means, standard deviations, skewness and kurtosis values, and the Hurst exponents are reported in Table 2. Overall, the results indicate that the MSM model reproduces the inflation-rate characterists accurately. We note, however, that the MSM model is not able to capture the asymmetric properties observed in the data.

5 Empirical application

5.1 Data

Our data set consists of seasonally adjusted consumer-price-index (CPI) based inflation rates for the G-7 countries (USA, UK, Germany, France, Italy, Canada and Japan). The monthly data were compiled from the International Financial Statistics (IFS). Our data cover the following country-specific time spans: (i) January 1985 – December 2015 for the USA, France, and Italy, (ii) January 1985 – November 2015 for Canada, and Japan, (iii) January 1989 – December 2015 for UK, and (iv) January 1992 – December 2015 for Germany.

The descriptive statistics of the inflation rates are reported in Table 3. The inflationrate time series exhibit positive skewness and excess kurtosis (greater than 3) for all G7 countries. This indicates a deviation from the normal distribution that is confirmed by the Jarque-Bera test. To test for stationarity, we apply the Phillips-Perron unit-root test, which does not reject the null hypothesis of a unit root at the 1% level for any of G7 countries (see Table 4). We also apply the KPSS test for the stationarity, the results of which are also reported in Table 4. Here, the null hypothesis of stationarity is rejected for all G7 countries at any conventional significance level. In order to analyse the decay in the tails of the unconditional distributions, we also disclose the country-specific tail indices in Table 3, which range between 2 and 13. For the USA, UK, France, Germany, Italy, and Canada, the tail indices are substantially larger than 2, indicating convergence under time-aggregation towards the normal distribution. For Japan, the tail index is close to 2, indicating that the unconditional distribution exhibits tail behaviour like the normal distribution. The results of the ARCH tests in Table 3 suggest the presence of heteroscedasticity in the G7 inflation-rate time series. Figure 1 displays the inflation-rate series.

5.2 Forecasting methodology

To analyze the predictive ability of our proposed model in forecasting inflation uncertainty, we adopt a rolling forecasting scheme that keeps fixed the estimation sample size over the out-of-sample period and adds new (and removes old) observations on a monthly basis. We define the following in-sample (out-of-sample) periods: (i) January 1958 – October 2009 (November 2009 – November 2015) for the USA, Canada and Japan, (ii) January 1989 – November 2009 (December 2009 – December 2015) for the UK, (iii) January 1958 – November 2009 (December 2009 – December 2015) for France and Italy, (iv) January 1992 – November 2009 (December 2009 – December 2015) for Germany. For each country and model specification, we consider inflation-uncertainty forecasts for the horizons h = 1, 2, 3, 4, 5, 6 months. We consider the end of the global financial crisis 2007-2009 as the splitting point in our forecasting analysis.

In a first step, we first evaluate the forecasting performance of our specifications on the basis of two loss functions, (i) the mean squared error (MSE), and (ii) the mean absolute error (MAE), given by

MSE =
$$T^{-1} \sum_{i=1}^{T} \left(h_{f,t} - \sigma_{a,t}^2 \right)^2$$
, (13)

MAE =
$$T^{-1} \sum_{i=1}^{T} \left| h_{f,t} - \sigma_{a,t}^2 \right|,$$
 (14)

with $h_{f,t}$ denoting the volatility forecast obtained from the binomial MSM or GARCHtype models, and $\sigma_{a,t}^2$ the monthly actual inflation-uncertainty proxy obtained from the monthly squared residuals from suitably selected STARFIMA model specifications. (Here, *T* is the number of out-of-sample observations.)

Next, we use of the predictive ability tests of Hansen (2005) and Diebold and Mariano (1995) to test the relative forecasting performance of our proposed specification against competitor models. The Equal Predictive Ability (EPA) test of Diebold and Mariano (1995) enables us to directly compare the forecasting accuracy of two competing models (say, M_1 and M_2) under a predefined loss function. The null hypothesis of no difference in the forecasting accuracy between the competing models is stated as

$$H_0: \mathbb{E}(d_t) = 0 \qquad \text{for all } t, \tag{15}$$

where $d_t = L(\varepsilon_{t,M_1}) - L(\varepsilon_{t,M_2})$, with $\varepsilon_{t,M_1} = h_{f,t,M_1} - \sigma_{a,t}^2$ and $\varepsilon_{t,M_2} = h_{f,t,M_2} - \sigma_{a,t}^2$ denoting the forecast errors obtained from the models M_1 and M_2 , respectively. The loss function $L(\cdot)$ is either the squared error loss $L(\varepsilon_{t,M_i}) = \varepsilon_{t,M_i}^2$, or the absolute error loss $L(\varepsilon_{t,M_i}) = |\varepsilon_{t,M_i}|$. The Diebold-Mariano test statistic is given by

$$EPA = \bar{d} \left[V(\bar{d}) \right]^{-1/2}, \tag{16}$$

where $\overline{d} = T^{-1} \sum_{t=1}^{T} d_t$, and $V(\overline{d}) = T^{-1} \left(\sum_{j=-N}^{N} \widehat{\gamma}_j \right)$ is the heteroscedasticity and autocor-

relation consistent (HAC) variance estimator. ($\hat{\gamma}_j$ is the estimate of the autocovariance function at lag *j*, *N* is the nearest integer larger than $T^{1/3}$.) Under the null hypothesis,

the EPA test statistic in Eq. (16) is asymptotically standard normally distributed.

Based on the framework of the Reality Check (RC) proposed by White (2000), the Superior Predictive Ability (SPA) test of Hansen (2005) enables us to compare a benchmark forecast model, M_0 , with K alternative competing models, M_1, \ldots, M_K , under predefined loss functions. The null hypothesis, stating that the benchmark model is not outperformed by any of the K competing models, is formalized as

$$H_0: \max\left\{\mathbb{E}(d_{t,M_1}), \dots, \mathbb{E}(d_{t,M_K})\right\} \le 0 \qquad \text{for all } t, \tag{17}$$

where $d_{t,M_i} = L(\varepsilon_{t,M_0}) - L(\varepsilon_{t,M_i})$ for i = 1, ..., K and $L(\cdot)$ denotes either the squared-error or the absolute-error loss function, as defined above. To formally state the test statistic, we consider (i) the sample mean of the *i*th loss differential, $\bar{d}_{M_i} = 1/T \sum_{t=1}^T d_{t,M_i}$, and (ii) the estimated variance $\widehat{Var}(\sqrt{T} \cdot \bar{d}_{M_i})$ for i = 1, ..., K. We refer the reader to Hansen (2005) for the technical details on how to estimate this latter variance by bootstrapping. To test the null hypothesis in Eq. (17), we use the test statistic

$$SPA = \max\left\{\frac{\sqrt{T}\bar{d}_{M_1}}{\widehat{Var}\left(\sqrt{T}\cdot\bar{d}_{M_1}\right)}, \dots, \frac{\sqrt{T}\bar{d}_{M_K}}{\widehat{Var}\left(\sqrt{T}\cdot\bar{d}_{M_K}\right)}\right\},\tag{18}$$

the *p*-values of which can be obtained via a stationary bootstrap procedure.

5.3 Forecasting results

The G7 country-specific root mean squared errors (RMSE) and mean absolute errors (MAE) values for alternative STARFIMA-MSM and STARFIMA-GARCH-type specifications at the forecasting horizons h = 1, 2, 3, 4, 5, 6 months are reported in Tables 5–8. Instead of considering the general STARFIMA(p, d, q) class in modeling our mean process, we restrict attention to two special cases, namely (i) the STARFI model (by setting q = 0), and the ARFIMA model (by setting $\phi_i(s_t, \eta_i) = \phi_i$ for i = 1, ..., p in the lag polynomial on the left side of Eq. (1)).

Based on the RMSEs and MAEs in Tables 5 and 6, the ARFIMA-MSM specification appears to fit best the US and UK inflation rates. For France, Germany, Italy, Canada and Japan, the ARFIMA-GARCH model yields relatively similar RMSEs and MAEs, that are superior to those of the ARFIMA-MSM model. In order to test whether the observed RMSE- and MAE-differences between the ARFIMA-MSM and -GARCH-type models are statistically significant, we apply the SPA test of Hansen (2005). The pvalues obtained from 5000 bootstrap samples using both, the squared and absolute error loss functions, are reported in Tables 9 and 10. While the null hypothesis (that the ARFIMA-MSM model is not outperformed by any of the ARFIMA-GARCH specifications) cannot be rejected for the US, UK and France at the 10% level, we find rejection of the null hypothesis for Germany, Italy, Canada and Japan. We also apply the EPA test in order to compare the ARFIMA-MSM specification with each of the ARFIMA-GARCH-type models (see Tables 11 and 12). The EPA results confirm those of the SPA tests. The null hypothesis (no difference in forecast accuracy) can only be rejected for the US, UK and France (in most cases) at the 10% level. For Germany, Italy, Canada and Japan, the ARFIMA-MSM and -GARCH models appear to exhibit similar forecasting performance.

When modeling the inflation-rate mean process by the STARFI specification, we obtain substantial forecast-accuracy gains. The RMSEs and MAEs in Tables 7, 8 as well as the SPA and EPA tests in Tables 13–16 indicate that the STARFI-MSM specification systematically outperforms the respective STARFI-GARCH specifications for all G7 countries, except for Japan. Our results suggest that the STARFI-MSM model fits the G7 inflation rates considerably well, thus producing accurate inflation-uncertainty forecasts. For Japan, all models perform well, but it appears impossible to find a specific model systematically dominating the others.

6 Conclusion

This paper proposes the ARFIMA- and STAR-MSM model for forecasting inflation uncertainty in the G7 countries. The specifications are found to model the dynamics of inflation uncertainty appropriately, since they are able to capture (i) dual long memory, (ii) clustering effects, (iii) non-linearities, and (iv) asymmetries observed in inflation rates. Our out-of-sample forecasting analysis confirms these capacities and the robustness of our models, which yield accurate forecasts of inflation uncertainty. In particular, the performance of the STARFI-MSM is interesting and should have major implications for monetary policy, which merit careful investigation in future research.

References

- Baillie, R. T., C. Chung, and M. Tieslau (1996). Analyzing inflation by the fractionally integrated arfima-garch model. *Journal of Applied Econometrics* 11, 23–40.
- Baker, R. S., N. Bloom, and S. J. Davis (2015). Measuring economic policy uncertainty. *Quarterly Journal of Economics 136*, 1593–1636.
- Beran, J. (1994). Statistics for Long-memory Processes. New York: Chapman and Hall.
- Bernanke, B. S. (1983). Irreversibility, uncertainty, and cyclical investment. *Quarterly Journal of Economics* 98, 85–106.
- Bloom, N. (2009). The impact of uncertainty shocks. *Econometrica* 77, 623–685.
- Bloom, N. (2014). Fluctuations in uncertainty. *Journal of Economic Perspectives* 28, 153–176.
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. *Journal* of Econometrics 31, 307–327.
- Calvet, L. and A. Fisher (2001). Forecasting multifractal volatility. Journal of Econometrics 105, 27–58.
- Calvet, L. and A. Fisher (2004). Regime-switching and the estimation of multifractal processes. *Journal of Financial Econometrics* 2, 44–83.
- Caporale, G., L. Onarante, and P. Paesani (2012). Inflation uncertainty in Euro Aera. *Empirical Economics* 43, 597–615.
- Clements, M. P. (2014). Forecast uncertainty Ex ante and Ex post: US inflation and output growth. *Journal of Business and Economic Statistics* 32, 206–216.
- Diebold, F. X. and R. S. Mariano (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics 13, 253–263.
- Ding, Z., C. Granger, and R. Engle (1993). A long memory property of stock market returns and a new model. *Journal of Empirical Finance 1*, 83–106.
- Fountas, S., A. Ioannidi, and M. Karanasos (2004). Inflation, inflation uncertainty and a common European Monetary Policy. *Manchester School 2*, 221–242.
- Glosten, L., R. Jagannathan, and D. E. Runkle (1993). On the relation between the expected value and volatility of the nominal excess return on stocks. *Journal of Finance* 46, 1779–1801.
- Goodhart, C. A. (1999). Central bankers and uncertainty. *Bank of England Quarterly Bulletin*.

- Greenspan, A. (2003). Testimony before the committee on banking, housing, and urban affairs, u.s. senate, on july 16, 2003. Technical report, Federal Reserve Board's Semiannual Monetary Policy Report to the Congress. Washington, DC: Federal Reserve Board.
- Gurkaynak, R. and J. H. Wright (2012). Macroeconomics and the term structure. Journal of Economic Literature 50, 331–367.
- Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business and Economic Statistics 23, 365–380.
- He, C. and T. Terasvirta (1999). Properties of moments of a family of GARCH processes. *Journal of Econometrics* 92, 173–192.
- Henzel, S. R. and M. Rengel (2017). Dimensions of macroeconomic uncertainty: A common factor analysis. *Economic Inquiry* 55, 843–877.
- Hillebrand, E. and M. C. Medeiros (2016). Nonlinearity, breaks and long-range dependence in time-series models. *Journal of Business and Economic Statistics* 34, 23–41.
- Hosking, J. R. (1981). Fractional differencing. Biometrika 68, 165–176.
- Jurado, K., S. C. Ludvigson, and S. Ng (2015). Measuring uncertainty. American Economic Review 105, 1177–1216.
- Karanasos, M. and S. Schurer (2008). Is the relationship between inflation and its uncertainty linear? *German Economic Review* 9, 265–286.
- Li, W. K. and A. I. McLeod (1986). Fractional time series modeling. *Biometrika* 73, 217–221.
- Ling, S. (1999). On the probabilistic properties of a double threshold ARMA conditional heteroskedasticity model. *Journal of Applied Probability 36*, 1–18.
- Ling, S. and M. McAleer (2002a). Necessary and sufficient moment conditions for the GARCH(r,s) and asymmetric power GARCH(r,s) models. *Econometric Theory 18*, 722–729.
- Ling, S. and M. McAleer (2002b). Stationary and the existence of moments of a GARCH processes. *Journal of Econometrics 106*, 109–117.
- Liu, R., T. di Matteo, and T. Lux (2007). True and apparent scaling: The proximity of the Markov-switching multifractal model to long-range dependence. *Physica A 383*, 35–42.
- Lundbergh, S. and T. Terasvirta (1999). Modelling economic high frequency time series with STAR-STGARCH models. SSE/EFI Working Paper Series in Economics and Finance, No. 291.

- Lux, T. (2008). The Markov-switching multifractal model of asset returns: GMM estimation and linear forecasting of volatility. *Journal of Business and Economic Statistics* 26, 194–210.
- Lux, T. and M. Segnon (2018). Multifractal models in finance: Their origin, properties and applications. In S. H. Chen and M. Kaboudan (Eds.), *OUP Handbook on Computational Economics and Finance*. Oxford University Press.
- Lux, T., M. Segnon, and R. Gupta (2016). Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data. *Energy Economics* 56, 117– 133.
- Makarova, S. (2018). European central bank footprints on inflation forecast uncertainty. *Economic Inquiry* 56, 637–652.
- Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. *Econometrica* 59, 347–370.
- Pötscher, B. and I. Prucha (1997). Dynamic Nonlinear Econometric Models Asymptotic Theory. Springer-Verlag: New York.
- Segnon, M., T. Lux, and R. Gupta (2017). Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models. *Renewable and Sustainable Energy Reviews* 69, 692–704.
- Sentana, E. (1995). Quadratic ARCH models. Review of Economi Studies 62, 639-661.
- Shiryaev, A. (1995). *Probability (Graduate Texts in Mathematics)* (2n Edition ed.). Springer Verlag.
- Stock, J. H. and M. W. Watson (2011). Disentangling. American Economic Review 101, 1514–1534.
- van Dijk, D., T. Terasvirta, and P. Franses (2002). Smooth transition autoregressive models - a survey of recent developments. *Econometric Reviews* 21, 1–47.
- Žikeš, F., J. Baruník, and N. Shenai (2017). Modeling and forecasting persistent financial durations. *Econometric Reviews* 36, 1081–1110.
- Wang, Y., C. Wu, and L. Yang (2016). Forecasting crude oil market volatility: A Markov switching multifractal volatility approach. *International Journal of Forecasting 32*, 1– 9.
- White, H. (2000). A reality check for data snooping. Econometrica 68, 1097–1126.
- Wooldridge, J. (1994). Aspects of Modelling Nonlinear Time Series, Chapter Estimation and Inference for Dependent Processes, pp. 2639–2738. Elsevier Science: Amsterdam.
- Wright, J. H. (2011). Term premia and inflation uncertainty: Empirical evidence from an international panel dataset. *American Economic Review 101*, 1514–1534.

Tables and Figures

Table 1: Monte-Carlo maximum-likelihood-estimation results for small sample sizes

		$m_0 = 1.1$			$m_0 = 1.2$			$m_0 = 1.3$		
	$T_1 = 250$	$T_2 = 500$	$T_3 = 1000$	$T_1 = 250$	$T_2 = 500$	$T_3 = 1000$	$T_1 = 250$	$T_2 = 500$	$T_3 = 1000$	
	Binomial parameter									
Bias	-0.036	-0.028	-0.010	-0.025	-0.023	-0.036	-0.022	-0.027	-0.018	
MSE	0.005	0.003	0.001	0.004	0.002	0.002	0.003	0.002	0.001	
					Scaling facto)r				
Bias	-0.108	-0.072	-0.061	-0.214	-0.150	-0.105	-0.315	-0.232	-0.187	
MSE	0.013	0.006	0.004	0.048	0.024	0.012	0.101	0.055	0.036	

Note: The table reports average biases and mean-squared errors (MSEs) of parameter estimates from 500 MSM(k) simulation paths for k = 8.

Table 2: Simulated moments and Hurst exponents via the binomial MSM(k) model

			C	7 countries			
	US	UK	France	Germany	Italy	Canada	Japan
Mean	1.659e-4	9.152e-4	-5.509e-4	4.574e-4	0.001	-1.472e-4	-6.959e-4
Standard deviation	0.283	0.260	0.317	0.224	0.281	0.365	0.737
Skewness	-6.932e-4	0.032	-0.003	0.021	0.006	0.006	-0.029
Kurtosis	4.369	7.130	5.627	5.775	8.202	4.686	8.380
			Hurst expone	ent for the G7	countrie	s	
ϵ_t	0.499	0.491	0.508	0.504	0.515	0.499	0.508
ϵ_t^2	0.673	0.814	0.780	0.772	0.867	0.694	0.901
$ \epsilon_t $	0.630	0.773	0.766	0.721	0.813	0.673	0.848

Note: For each country, we estimate the parameters in the binomial MSM(8) specification and use the estimates to simulate data with country-specific sample sizes corresponding to those of the estimated residuals from the STARFIMA model. The moments and Hurst exponents are averaged over the number of replications.

Table 3: Descriptive statistics of the G7 inflation-rate time series

	US	UK	France	Germany	Italy	Canada	Japan
No of Obs	696	324	696	288	696	695	695
Mean	3.778	2.643	4.582	1.771	6.004	3.815	3.157
Standard deviation	2.864	1.802	3.980	1.171	5.739	3.082	4.264
Skewness	1.536	1.395	1.238	1.482	1.424	1.248	2.206
Kurtosis	5.428	4.624	3.728	5.993	4.105	3.687	10.080
Tail index	7.688	11.719	12.251	6.720	10.922	13.050	2.09
<i>Q</i> (8)	4.825E+3	2.056E+3	4.769E+3	1.359E+3	5.123E+3	5.030E+3	4.712E+3
ARCH(1)	685.983	309.386	684.018	271.658	684.284	684.306	660.613
Jarque-Bera	444.528	140.674	193.272	213.002	207.722	194.039	2.095E+3

Note: Q(8) denotes the Ljung-Box test for serial correlation out to lag 8. ARCH(1) denotes the Engle test for ARCH effects at lag 1.

	H_0 :	<i>I</i> (1)	_	H_0	: <i>I</i> (0)
Country	PP	PP*		ST	ST^*
US	-2.044	-1.876		3.634	6.001
UK	-1.851	-1.669		2.101	3.963
France	-2.225	-2.243		2.753	13.571
Germany	-3.357	-3.363		1.148	3.495
Italy	-1.728	-1.324		4.549	8.382
Canada	-2.052	-1.798		4.356	8.033
Japan	-3.119	-2.345		1.704	13.913

Table 4: Unit root tests for inflation time series

Note: PP and PP* represent the Phillips-Perron adjusted *t*-statistics of the lagged dependent variable in a regression with (i) intercept and time trend, and (ii) intercept only. The critical values at the 1% level are **-3.975** and **-3.441**. ST and ST* denote the KPSS test statistics using residuals from regressions with (i) intercept and time trend, and (ii) intercept only. The critical values at the 1% level are **0.216** and **0.739**.

Forecasting horizons	1M	2M	3M	4M	5M	6M
Countries			GAI	RCH		
US	0.179	0.184	0.187	0.183	0.178	0.173
UK	0.110	0.115	0.120	0.123	0.124	0.126
France	0.065	0.065	0.066	0.067	0.068	0.069
Germany	0.078	0.077	0.076	0.069	0.068	0.066
Italy	0.076	0.078	0.078	0.078	0.078	0.078
Canada	0.213	0.210	0.210	0.211	0.209	0.209
Japan	0.512	0.510	0.509	0.508	0.505	0.506
			G.	JR		
US	0.196	0.201	0.206	0.204	0.198	0.192
UK	0.117	0.119	0.121	0.125	0.128	0.130
France	0.063	0.064	0.065	0.067	0.067	0.069
Germany	0.082	0.081	0.079	0.073	0.072	0.071
Italy	0.076	0.077	0.077	0.078	0.078	0.078
Canada	0.213	0.210	0.210	0.211	0.210	0.209
Japan	0.513	0.511	0.509	0.507	0.504	0.504
			EGA	RCH		
US	0.169	0.171	0.171	0.169	0.162	0.156
UK	0.117	0.115	0.116	0.116	0.116	0.117
France	0.078	0.083	0.079	0.082	0.080	0.081
Germany	0.085	0.084	0.082	0.077	0.075	0.073
Italy	0.078	0.078	0.079	0.080	0.080	0.080
Canada	0.215	0.210	0.210	0.210	0.211	0.211
Japan	0.505	0.503	0.502	0.500	0.498	0.497
			QGA	RCH		
US	0.180	0.183	0.185	0.183	0.177	0.171
UK	0.103	0.104	0.106	0.107	0.108	0.110
France	0.061	0.063	0.064	0.065	0.067	0.066
Germany	0.083	0.082	0.080	0.072	0.071	0.069
Italy	0.077	0.078	0.078	0.079	0.079	0.078
Canada	0.213	0.210	0.210	0.211	0.209	0.208
Japan	0.509	0.508	0.507	0.505	0.503	0.503
			APAG	ARCH		
US	0.203	0.209	0.216	0.212	0.206	0.201
UK	0.120	0.123	0.123	0.128	0.128	0.125
France	0.057	0.057	0.058	0.058	0.058	0.059
Germany	0.086	0.086	0.086	0.078	0.076	0.075
Italy	0.075	0.077	0.078	0.079	0.078	0.078
Canada	0.214	0.212	0.213	0.214	0.212	0.211
Japan	0.509	0.506	0.505	0.504	0.410	0.500
			MS	SM		
US	0.153	0.157	0.156	0.154	0.151	0.150
UK	0.104	0.104	0.103	0.105	0.106	0.106
France	0.060	0.061	0.061	0.062	0.062	0.062
Germany	0.082	0.081	0.080	0.075	0.074	0.073
	0.082	0.086	0.089	0.091	0.092	0.093
Canada	0.219	0.215	0.215	0.216	0.214	0.214
Japan	0.518	0.514	0.513	0.511	0.508	0.511

Table 5: Root mean squared errors (RMSE), mean process: ARFIMA

Note: RMSEs are computed for the following out-of-sample periods: November 2009 – November 2015 for Canada, Japan; December 2009 – December 2015 for the US, UK, France, Germany and Italy. The lag orders in the ARFIMA specification (not displayed here) were obtained from the Bayesian Information Criterion (BIC).

Forecasting horizons	1M	2M	3M	4M	5M	6M		
Countries			GAI	RCH				
US	0.140	0.142	0.144	0.142	0.139	0.137		
UK	0.083	0.088	0.091	0.094	0.093	0.096		
France	0.059	0.060	0.061	0.062	0.063	0.064		
Germany	0.063	0.064	0.064	0.060	0.060	0.060		
Italy	0.049	0.049	0.050	0.050	0.049	0.050		
Canada	0.151	0.148	0.150	0.151	0.150	0.149		
Japan	0.199	0.199	0.200	0.199	0.198	0.199		
			G.	JR				
US	0.150	0.151	0.152	0.152	0.148	0.145		
UK	0.091	0.093	0.092	0.093	0.096	0.098		
France	0.056	0.058	0.059	0.061	0.061	0.063		
Germany	0.066	0.066	0.066	0.063	0.062	0.061		
Italy	0.048	0.047	0.049	0.049	0.048	0.048		
Canada	0.151	0.150	0.150	0.152	0.151	0.149		
Japan	0.214	0.215	0.214	0.214	0.213	0.215		
			EGA	RCH				
US	0.133	0.133	0.132	0.132	0.128	0.125		
UK	0.092	0.091	0.089	0.088	0.088	0.089		
France	0.072	0.078	0.073	0.077	0.074	0.076		
Germany	0.070	0.070	0.069	0.066	0.065	0.064		
Italy	0.050	0.050	0.051	0.051	0.051	0.050		
Canada	0.144	0.137	0.139	0.140	0.141	0.142		
Japan	0.191	0.192	0.190	0.189	0.190	0.192		
			QGA	RCH				
US	0.140	0.140	0.140	0.140	0.136	0.133		
UK	0.077	0.078	0.079	0.079	0.080	0.080		
France	0.056	0.058	0.060	0.060	0.062	0.061		
Germany	0.067	0.067	0.066	0.063	0.061	0.060		
Italy	0.049	0.049	0.050	0.051	0.050	0.050		
Canada	0.151	0.149	0.149	0.151	0.150	0.148		
Japan	0.204	0.205	0.207	0.207	0.207	0.210		
			APAG	ARCH				
US	0.154	0.155	0.158	0.156	0.152	0.150		
UK	0.089	0.090	0.087	0.090	0.091	0.090		
France	0.052	0.052	0.053	0.054	0.054	0.055		
Germany	0.071	0.072	0.072	0.068	0.067	0.067		
Italy	0.048	0.048	0.050	0.050	0.048	0.049		
Canada	0.155	0.154	0.155	0.157	0.154	0.154		
Japan	0.186	0.188	0.186	0.187	0.188	0.190		
	MSM							
US	0.123	0.126	0.127	0.126	0.123	0.122		
UK	0.080	0.082	0.081	0.082	0.084	0.086		
France	0.051	0.052	0.053	0.054	0.054	0.055		
Germany	0.067	0.068	0.068	0.066	0.065	0.064		
Italy	0.063	0.066	0.071	0.073	0.074	0.077		
Canada	0.162	0.159	0.161	0.163	0.161	0.161		
Japan	0.216	0.219	0.227	0.231	0.234	0.240		

Table 6: Mean absolute errors (MAE), mean process: ARFIMA

Note: MAEs are computed for the following out-of-sample periods: November 2009 – November 2015 for Canada, Japan; December 2009 – December 2015 for the US, UK, France, Germany and Italy. The lag orders in the ARFIMA specification (not displayed here) were obtained from the Bayesian Information Criterion (BIC).

Forecasting horizons	1M	2M	3M	4M	5M	6M
Countries			GAI	RCH		
US	0.176	0.181	0.184	0.179	0.173	0.169
UK	0.108	0.113	0.112	0.114	0.118	0.120
France	0.067	0.067	0.067	0.068	0.068	0.069
Germany	0.080	0.080	0.079	0.072	0.071	0.070
Italy	0.075	0.076	0.076	0.076	0.076	0.076
Canada	0.206	0.203	0.203	0.204	0.203	0.203
Japan	0.516	0.514	0.513	0.511	0.509	0.509
			G.	JR		
US	0.192	0.197	0.203	0.202	0.195	0.190
UK	0.121	0.115	0.117	0.122	0.125	0.129
France	0.066	0.066	0.067	0.068	0.068	0.069
Germany	0.082	0.083	0.081	0.076	0.075	0.074
Italy	0.074	0.075	0.075	0.075	0.075	0.075
Canada	0.205	0.203	0.202	0.205	0.203	0.204
Japan	0.517	0.515	0.513	0.511	0.507	0.508
			EGA	RCH		
US	0.169	0.171	0.172	0.170	0.163	0.157
UK	0.117	0.117	0.118	0.119	0.119	0.122
France	0.078	0.084	0.079	0.081	0.080	0.081
Germany	0.086	0.085	0.083	0.077	0.075	0.078
Italy	0.077	0.077	0.077	0.078	0.078	0.078
Canada	0.209	0.203	0.203	0.204	0.204	0.205
Japan	0.508	0.507	0.506	0.503	0.501	0.503
			QGA	RCH		
US	0.176	0.179	0.181	0.180	0.173	0.167
UK	0.105	0.105	0.107	0.109	0.110	0.112
France	0.061	0.060	0.059	0.060	0.060	0.060
Germany	0.085	0.085	0.082	0.076	0.075	0.074
Italy	0.076	0.076	0.077	0.077	0.077	0.077
Canada	0.206	0.203	0.202	0.204	0.202	0.202
Japan	0.513	0.512	0.510	0.508	0.506	0.508
			APGA	ARCH		
US	0.193	0.202	0.210	0.204	0.198	0.194
UK	0.111	0.118	0.121	0.126	0.130	0.128
France	0.060	0.060	0.061	0.061	0.062	0.062
Germany	0.086	0.086	0.092	0.084	0.082	0.082
Italy	0.073	0.076	0.076	0.076	0.075	0.074
Canada	0.205	0.204	0.206	0.206	0.204	0.204
Japan	0.512	0.509	0.507	0.505	0.503	0.504
			MS	SM		
US	0.155	0.158	0.158	0.155	0.152	0.151
UK	0.103	0.103	0.102	0.104	0.104	0.105
France	0.061	0.061	0.061	0.062	0.062	0.062
Germany	0.083	0.084	0.083	0.078	0.077	0.076
Italy	0.082	0.086	0.088	0.089	0.089	0.091
Canada	0.213	0.208	0.208	0.210	0.208	0.208
Japan	0.522	0.518	0.517	0.515	0.511	0.515

Table 7: Root mean squared errors (RMSE), mean process: STARFI

Note: RMSEs are computed for the following out-of-sample periods: November 2009 – November 2015 for Canada, Japan; December 2009 – December 2015 for the US, UK, France, Germany and Italy. The lag orders in the STARFI specification (not displayed here) were obtained from the Bayesian Information Criterion (BIC).

Forecasting horizons	1M	2M	3M	4M	5M	6M			
Countries			GAI	RCH					
US	0.136	0.138	0.138	0.136	0.133	0.131			
UK	0.081	0.087	0.086	0.088	0.091	0.093			
France	0.062	0.062	0.062	0.063	0.063	0.064			
Germany	0.064	0.064	0.064	0.061	0.061	0.060			
Italy	0.049	0.049	0.050	0.049	0.048	0.050			
Canada	0.152	0.149	0.150	0.151	0.150	0.149			
Japan	0.198	0.197	0.200	0.199	0.198	0.200			
		GJR							
US	0.142	0.144	0.146	0.145	0.142	0.141			
UK	0.095	0.091	0.090	0.094	0.097	0.097			
France	0.060	0.060	0.061	0.062	0.063	0.064			
Germany	0.065	0.066	0.066	0.063	0.062	0.061			
Italy	0.046	0.047	0.047	0.047	0.047	0.047			
Canada	0.150	0.149	0.149	0.152	0.152	0.151			
Japan	0.216	0.216	0.217	0.217	0.216	0.218			
			EGA	RCH					
US	0.128	0.129	0.129	0.128	0.123	0.121			
UK	0.093	0.093	0.092	0.091	0.092	0.093			
France	0.072	0.078	0.074	0.075	0.075	0.075			
Germany	0.071	0.070	0.068	0.067	0.066	0.067			
Italy	0.050	0.050	0.051	0.052	0.051	0.052			
Canada	0.147	0.140	0.142	0.143	0.144	0.145			
Japan	0.192	0.193	0.194	0.194	0.195	0.198			
			QGA	RCH					
US	0.132	0.132	0.134	0.134	0.130	0.127			
UK	0.081	0.080	0.083	0.083	0.084	0.084			
France	0.055	0.055	0.055	0.056	0.056	0.055			
Germany	0.067	0.068	0.066	0.064	0.063	0.061			
Italy	0.049	0.049	0.050	0.050	0.050	0.051			
Canada	0.151	0.149	0.149	0.152	0.150	0.149			
Japan	0.204	0.206	0.208	0.209	0.209	0.213			
			APGA	ARCH					
US	0.144	0.149	0.151	0.146	0.143	0.143			
UK	0.085	0.091	0.088	0.091	0.094	0.093			
France	0.055	0.055	0.056	0.057	0.057	0.057			
Germany	0.072	0.073	0.075	0.070	0.070	0.069			
Italy	0.046	0.048	0.049	0.047	0.046	0.047			
Canada	0.153	0.151	0.154	0.156	0.152	0.152			
Japan	0.185	0.187	0.186	0.188	0.189	0.192			
	0.455	0.477	MS	SM	0.477				
US	0.123	0.126	0.126	0.124	0.122	0.122			
UK	0.081	0.082	0.081	0.082	0.084	0.085			
France	0.052	0.052	0.053	0.054	0.054	0.055			
Germany	0.067	0.068	0.068	0.066	0.065	0.064			
naly	0.062	0.066	0.070	0.072	0.073	0.076			
Canada	0.163	0.159	0.161	0.162	0.159	0.160			
Japan	0.214	0.219	0.226	0.230	0.233	0.239			

Table 8: Mean absolute errors (MAE), mean process: STARFI

Note: MAEs are computed for the following out-of-sample periods: November 2009 – November 2015 for Canada, Japan; December 2009 – December 2015 for the US, UK, France, Germany and Italy. The lag orders in the STARFI specification (not displayed here) were obtained from the Bayesian Information Criterion (BIC).

Forecasting horizons	1M	2M	3M	4M	5M	6M
Models			U	S		
GARCH	0.088	0.066	0.047	0.070	0.049	0.045
GJR	0.034	0.032	0.026	0.024	0.021	0.039
EGARCH	0.055	0.088	0.081	0.072	0.143	0.284
QGARCH	0.041	0.047	0.041	0.031	0.031	0.032
APGARCH	0.038	0.038	0.031	0.031	0.033	0.043
MSM	1.000	1.000	1.000	1.000	0.857	0.716
			U	K		
GARCH	0.110	0.255	0.094	0.031	0.164	0.109
GJR	0.017	0.028	0.036	0.034	0.033	0.031
EGARCH	0.046	0.122	0.086	0.134	0.161	0.100
QGARCH	0.621	0.748	0.259	0.328	0.287	0.208
APGARCH	0.070	0.051	0.058	0.061	0.057	0.109
MSM	0.379	0.735	0.741	0.672	0.713	0.792
			Fra	nce		
GARCH	0.006	0.002	0.001	0.001	0.000	0.000
GJR	0.053	0.026	0.020	0.010	0.002	0.001
EGARCH	0.000	0.000	0.000	0.000	0.000	0.000
QGARCH	0.080	0.006	0.004	0.001	0.000	0.000
APGARCH	0.780	0.856	0.821	0.859	0.839	1.000
MSM	0.274	0.172	0.224	0.179	0.161	0.145
			Gerr	nany		
GARCH	1.000	1.000	1.000	1.000	1.000	1.000
GJR	0.020	0.049	0.076	0.016	0.034	0.037
EGARCH	0.009	0.018	0.022	0.005	0.008	0.007
QGARCH	0.012	0.021	0.064	0.037	0.075	0.091
APGARCH	0.013	0.006	0.002	0.005	0.005	0.004
MSM	0.055	0.049	0.101	0.010	0.011	0.016
			Ita	ıly		
GARCH	0.240	0.367	0.232	0.474	0.553	0.476
GJR	0.245	0.717	0.898	0.926	0.599	0.559
EGARCH	0.092	0.202	0.144	0.151	0.061	0.109
QGARCH	0.099	0.180	0.141	0.160	0.053	0.134
APGARCH	0.781	0.770	0.312	0.387	0.765	0.785
MSM	0.018	0.012	0.003	0.001	0.000	0.000
			Car	iada		
GARCH	0.953	0.869	0.582	0.840	0.803	0.791
GJR	0.727	0.521	0.630	0.450	0.431	0.416
EGARCH	0.383	0.558	0.549	0.598	0.437	0.347
QGARCH	0.802	0.838	0.951	0.870	0.993	0.998
APGARCH	0.468	0.116	0.048	0.139	0.154	0.125
MSM	0.004	0.059	0.025	0.041	0.033	0.005
			Jap	ban		
GARCH	0.210	0.267	0.217	0.238	0.114	0.172
GJR	0.130	0.188	0.267	0.268	0.379	0.148
EGARCH	0.749	0.733	0.993	0.993	0.853	0.764
QGARCH	0.047	0.037	0.031	0.017	0.018	0.015
APGARCH	0.373	0.492	0.451	0.400	0.541	0.350
MSM	0.063	0.060	0.052	0.014	0.029	0.013

Table 9: Superior Predictive Ability (SPA) test, squared error loss, mean process: ARFIMA

Note: The displayed numbers are the *p*-values of the SPA test of Hansen (2005) using the squared error loss. We test the null hypothesis that a benchmark model outperforms the other candidate models. The *p*-values are obtained for the following out-of-sample periods: November 2009 – November 2015 for Canada and Japan; December 2009 –December 2015 for the US, UK, France, Germany and Italy. The inflation-rate mean process is ARFIMA.

Forecasting horizons	1M	2M	3M	4M	5M	6M
Models			US	5		
GARCH	0.075	0.032	0.014	0.026	0.025	0.018
GJR	0.024	0.014	0.0150	0.017	0.017	0.028
EGARCH	0.089	0.156	0.180	0.168	0.236	0.346
QGARCH	0.053	0.076	0.036	0.052	0.078	0.051
APGARCH	0.023	0.020	0.009	0.016	0.023	0.030
MSM	1.000	0.844	0.820	0.832	0.764	0.678
			UF	K		
GARCH	0.136	0.130	0.057	0.016	0.098	0.058
GJR	0.007	0.004	0.014	0.012	0.003	0.002
EGARCH	0.0122	0.020	0.051	0.073	0.050	0.036
QGARCH	0.814	1.000	0.742	0.802	1.000	1.000
APGARCH	0.058	0.043	0.159	0.058	0.049	0.091
MSM	0.258	0.145	0.375	0.265	0.175	0.155
			Fran	ce		
GARCH	0.001	0.000	0.000	0.000	0.000	0.000
GIR	0.008	0.003	0.001	0.000	0.000	0.000
EGARCH	0.000	0.000	0.000	0.000	0.000	0.000
OGARCH	0.098	0.004	0.001	0.002	0.000	0.001
APGARCH	0.359	0.537	0.470	0.544	0.542	0.578
MSM	0.641	0.463	0.530	0.456	0.458	0.422
			Germ	anv		
GARCH	1.000	1.000	0.847	1.000	0.756	0.691
GJR	0.161	0.154	0.204	0.123	0.188	0.229
EGARCH	0.006	0.007	0.014	0.004	0.004	0.003
OGARCH	0.086	0.105	0.250	0.220	0.393	0.484
APGARCH	0.033	0.018	0.006	0.012	0.008	0.001
MSM	0.009	0.010	0.020	0.010	0.016	0.031
			Ital	v		
GARCH	0.272	0.204	0.249	0.402	0.271	0.200
GJR	0.611	1.000	1.000	0.913	0.822	0.715
EGARCH	0.062	0.065	0.063	0.082	0.052	0.133
OGARCH	0.045	0.024	0.030	0.043	0.012	0.060
APGARCH	0.630	0.281	0.063	0.374	0.559	0.462
MSM	0.000	0.000	0.000	0.000	0.000	0.000
			Cana	ıda		
GARCH	0.365	0.084	0.066	0.094	0.139	0.261
GJR	0.268	0.078	0.087	0.096	0.112	0.200
EGARCH	0.880	1.000	1.000	1.000	1.000	1.000
OGARCH	0.388	0.091	0.092	0.102	0.155	0.337
APGARCH	0.050	0.012	0.010	0.006	0.036	0.009
MSM	0.000	0.000	0.000	0.000	0.000	0.000
	0.000	0.000	Ians	n	0.000	0.000
GARCH	0.121	0.162	0.092	0.140	0.179	0.175
GIR	0.007	0.007	0.003	0.003	0.004	0.003
EGARCH	0.433	0.469	0.005	0.373	0.377	0.542
OGARCH	0.045	0.402	0.013	0.007	0.010	0.042
APGARCH	0.731	0.059	0.720	0.627	0.673	0.651
MSM	0.751	0.704	0.729	0.027	0.025	0.001
14153141	0.000	0.001	0.000	0.000	0.000	0.000

Table 10: Superior Predictive Ability (SPA) test, absolute error loss, mean process: ARFIMA

Note: The displayed numbers are the *p*-values of the SPA test of Hansen (2005) using the absolute error loss. We test the null hypothesis that a benchmark model outperforms the other candidate models. The *p*-values are obtained for the following out-of-sample periods: November 2009 – November 2015 for Canada and Japan; December 2009 –December 2015 for the US, UK, France, Germany and Italy. The inflation-rate mean process is ARFIMA.

		Forecasting horizons							
Model 1	Model 2	1 M	2M	3M	4M	5M	6M		
				ι	US				
GARCH	MSM	0.026	0.087	0.087	0.068	0.136	0.192		
GJR		0.015	0.067	0.074	0.055	0.106	0.155		
EGARCH		0.045	0.140	0.142	0.066	0.169	0.308		
QGARCH		0.022	0.084	0.086	0.050	0.118	0.190		
APGARCH		0.012	0.064	0.066	0.061	0.113	0.154		
				τ	JK				
GARCH	MSM	0.057	0.163	0.034	0.021	0.120	0.067		
GJR		0.018	0.059	0.092	0.135	0.148	0.162		
EGARCH		0.054	0.089	0.079	0.158	0.194	0.167		
QGARCH		0.633	0.549	0.317	0.397	0.382	0.334		
APGARCH		0.037	0.073	0.107	0.144	0.168	0.204		
		France							
GARCH	MSM	0.011	0.020	0.010	0.023	0.002	0.002		
GJR		0.009	0.020	0.012	0.004	0.000	0.000		
EGARCH		0.000	0.000	0.000	0.000	0.000	0.000		
QGARCH		0.395	0.349	0.278	0.322	0.192	0.251		
APGARCH		0.777	0.800	0.728	0.745	0.718	0.706		
				Ger	many				
GARCH	MSM	0.965	0.969	0.930	0.958	0.940	0.919		
GJR		0.464	0.633	0.670	0.806	0.825	0.791		
EGARCH		0.040	0.136	0.225	0.360	0.403	0.402		
QGARCH		0.284	0.382	0.558	0.760	0.776	0.751		
APGARCH		0.127	0.126	0.083	0.343	0.380	0.363		
				It	taly				
GARCH	MSM	0.947	0.968	0.979	0.985	0.987	0.9871		
GJR		0.890	0.966	0.980	0.982	0.981	0.981		
EGARCH		0.783	0.929	0.956	0.963	0.959	0.966		
QGARCH		0.846	0.950	0.971	0.975	0.970	0.976		
APGARCH		0.969	0.967	0.968	0.971	0.981	0.984		
				Ca	nada				
GARCH	MSM	0.995	0.972	0.977	0.978	0.974	0.996		
GJR		0.997	0.951	0.959	0.927	0.926	0.972		
EGARCH		0.738	0.747	0.791	0.797	0.689	0.677		
QGARCH		0.995	0.966	0.978	0.967	0.975	0.996		
APGARCH		0.991	0.814	0.743	0.853	0.846	0.981		
				Ja	ipan				
GARCH	MSM	0.937	0.831	0.772	0.736	0.657	0.809		
GJR		0.729	0.658	0.675	0.701	0.691	0.941		
EGARCH		0.988	0.985	0.968	0.976	0.917	0.996		
OGARCH		0,966	0,946	0.893	0.922	0.823	0.973		
APGARCH		0.996	0.987	0.931	0.879	0.877	0.986		

Table 11: Equal Predictive Ability (EPA) test, squared error loss, mean process: ARFIMA

Note: The displayed number are p-values of the EPA test of Diebold and Mariano (1995) using the squared error loss. We test the null hypothesis that the forecasts at horizon h of Model 1 are equal to those of Model 2 against the one-sided alternative that forecasts of Model 1 are inferior to those of Model 2. The p-values are obtained for the following out-of-sample periods: November 2009 – November 2015 for Canada and Japan,; December 2009 – December 2015 for the US, UK, France, Germany and Italy. The inflation-rate mean process is ARFIMA.

		Forecasting horizons							
Model 1	Model 2	1M	2M	3M	4M	5M	6M		
				U	IS				
GARCH	MSM	0.015	0.085	0.099	0.128	0.185	0.225		
GJR		0.010	0.064	0.089	0.108	0.158	0.206		
EGARCH		0.057	0.216	0.256	0.254	0.330	0.416		
QGARCH		0.021	0.126	0.159	0.173	0.237	0.293		
APGARCH		0.007	0.056	0.063	0.093	0.151	0.189		
				U	К				
GARCH	MSM	0.246	0.149	0.054	0.045	0.188	0.102		
GJR		0.024	0.086	0.142	0.191	0.199	0.200		
EGARCH		0.036	0.127	0.166	0.271	0.351	0.371		
QGARCH		0.834	0.835	0.696	0.724	0.775	0.764		
APGARCH		0.086	0.170	0.301	0.266	0.328	0.384		
		France							
GARCH	MSM	0.000	0.000	0.000	0.001	0.000	0.000		
GJR		0.000	0.000	0.000	0.000	0.000	0.000		
EGARCH		0.000	0.000	0.000	0.000	0.000	0.000		
QGARCH		0.046	0.049	0.059	0.122	0.060	0.099		
APGARCH		0.324	0.515	0.464	0.515	0.514	0.532		
				Geri	nany				
GARCH	MSM	0.999	0.993	0.963	0.957	0.930	0.891		
GJR		0.833	0.917	0.917	0.935	0.956	0.939		
EGARCH		0.055	0.167	0.315	0.435	0.480	0.467		
QGARCH		0.494	0.641	0.804	0.844	0.855	0.826		
APGARCH		0.086	0.137	0.156	0.289	0.334	0.307		
				Ita	aly				
GARCH	MSM	1.000	1.000	1.000	1.000	1.000	1.000		
GJR		1.000	1.000	1.000	1.000	1.000	1.000		
EGARCH		1.000	1.000	1.000	1.000	1.000	1.000		
QGARCH		1.000	1.000	1.000	1.000	1.000	1.000		
APGARCH		1.000	1.000	1.000	1.000	1.000	1.000		
				Car	nada				
GARCH	MSM	1.000	1.000	1.000	1.000	1.000	1.000		
GJR		1.000	0.999	0.999	0.997	0.991	0.997		
EGARCH		0.995	0.997	0.999	0.999	0.997	0.991		
QGARCH		1.000	1.000	1.000	1.000	1.000	1.000		
APGARCH		0.996	0.958	0.976	0.986	0.998	0.999		
				Jaj	pan				
GARCH	MSM	1.000	1.000	1.000	1.000	1.000	1.000		
GJR		0.563	0.634	0.777	0.836	0.860	0.899		
EGARCH		0.997	0.991	0.994	0.996	0.995	0.999		
QGARCH		0.983	0.969	0.982	0.992	0.993	0.997		
APGARCH		1.000	1.000	1.000	1.000	1.000	1.000		

Table 12: Equal Predictive Ability (EPA) test, absolute error loss, mean process: ARFIMA

Note: The displayed number are p-values of the EPA test of Diebold and Mariano (1995) using the absolute error loss. We test the null hypothesis that the forecasts at horizon h of Model 1 are equal to those of Model 2 against the one-sided alternative that forecasts of Model 1 are inferior to those of Model 2. The p-values are obtained for the following out-of-sample periods: November 2009 – November 2015 for Canada and Japan,; December 2009 – December 2015 for the US, UK, France, Germany and Italy. The inflation-rate mean process is ARFIMA.

Forecosting horizons	1M	214	214	414	514	^M
Models	1101	2191	I	JS	5101	0101
GARCH	0.108	0.068	0.051	0.099	0.058	0.038
GIR	0.041	0.036	0.027	0.029	0.024	0.041
EGARCH	0.081	0.111	0.094	0.081	0.142	0.292
OGARCH	0.049	0.053	0.037	0.027	0.026	0.052
APGARCH	0.058	0.047	0.035	0.052	0.045	0.055
MSM	1 000	1.000	0.906	1 000	0.858	0.737
	1.000	1.000	I	IK	0.000	0.757
GARCH	0 197	0.099	0.088	0.044	0.080	0.063
GIR	0.004	0.035	0.033	0.044	0.030	0.005
EGARCH	0.026	0.046	0.066	0.040	0.092	0.062
OGARCH	0.542	0.040	0.000	0.145	0.142	0.002
ADGARCH	0.342	0.280	0.101	0.145	0.142	0.120
MSM	0.217	0.080	1.000	1.000	1.000	1 000
WSW	0.715	0.720	1.000 Em	1.000	1.000	1.000
CAPCH	0.001	0.001	0.000	0.000	0.000	0.000
GARCH	0.001	0.001	0.000	0.000	0.000	0.000
ECADOU	0.029	0.012	0.000	0.005	0.001	0.000
OCARCH	0.000	0.000	0.000	0.000	0.000	0.000
ADCARCH	0.025	0.617	0.719	0.145	0.738	0.855
APGARCH	0.798	0.085	0.058	0.145	0.028	0.022
MSM	0.422	0.300	0.318 Gor	0.234	0.285	0.193
CARCH	1.000	0.001	1 000	1 000	1.000	1.000
GIR	0.094	0.050	0.000	0.034	0.049	0.034
EGARCH	0.023	0.056	0.090	0.034	0.049	0.005
OGARCH	0.025	0.030	0.055	0.038	0.044	0.005
APGARCH	0.150	0.171	0.007	0.007	0.001	0.020
MSM	0.092	0.036	0.030	0.008	0.007	0.010
MOM	0.072	0.050	It	alv	0.007	0.010
GARCH	0.052	0.108	0.103	0.318	0 341	0 188
GIR	0.263	1.000	1.000	0.942	0.542	0.100
EGARCH	0.004	0.021	0.013	0.042	0.006	0.022
OGARCH	0.044	0.021	0.019	0.005	0.004	0.022
APGARCH	0.801	0.025	0.017	0.015	0.849	0.017
MSM	0.007	0.006	0.003	0.000	0.001	0.000
MOM	0.007	0.000	0.005	nada	0.001	0.000
GARCH	0.638	0.801	0.350	0.01/	0.875	0 722
GIR	0.038	0.001	0.550	0.514	0.675	0.722
ECARCH	0.745	0.790	0.035	0.037	0.317	0.332
OGARCH	0.330	0.012	0.018	0.022	0.447	0.361
ADGADCH	0.705	0.278	0.916	0.539	0.700	0.599
MSM	0.795	0.435	0.108	0.329	0.419	0.012
INI SINI	0.000	0.077	0.055	0.070	0.028	0.002
GARCH	0.217	0.266	0.210	0.224	0.1456	0.109
CID	0.217	0.200	0.219	0.224	0.1450	0.198
UJK	0.109	0.158	0.200	0.199	0.327	0.225
EGAKCH OCADOU	0.712	0.021	0.985	0.987	0.907	0.995
QUAKCH ADCADCU	0.054	0.031	0.024	0.010	0.008	0.018
APGARCH	0.430	0.561	0.543	0.514	0.459	0.388
MSM	0.052	0.035	0.059	0.011	0.010	0.030

Table 13: Superior Predictive Ability (SPA) test, squared error loss, mean process: STARFI

Note: The displayed numbers are the *p*-values of the SPA test of Hansen (2005) using the squared error loss. We test the null hypothesis that a benchmark model outperforms the other candidate models. The *p*-values are obtained for the following out-of-sample periods: November 2009 – November 2015 for Canada and Japan; December 2009 –December 2015 for the US, UK, France, Germany and Italy. The inflation-rate mean process is STARFI.

Forecasting horizons	1M	2M	3M	4M	5M	6M			
Models		US							
GARCH	0.000	0.000	0.000	0.000	0.000	0.000			
GJR	0.000	0.000	0.000	0.000	0.000	0.000			
EGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
QGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
APGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
MSM	1.000	1.000	1.000	1.000	1.000	1.000			
	UK								
GARCH	0.000	0.000	0.000	0.000	0.000	0.000			
GJR	0.000	0.000	0.000	0.000	0.000	0.000			
EGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
OGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
APGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
MSM	1.000	1.000	1.000	1.000	1.000	1.000			
			Fra	nce					
GARCH	0.000	0.000	0.000	0.000	0.000	0.000			
GIR	0.000	0.000	0.000	0.000	0.000	0.000			
EGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
OGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
APGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
MSM	1.000	1.000	1.000	1.000	1.000	1.000			
Mom	1.000	1.000	Gerr	1.000	1.000	1.000			
CARCH	0.000	0.000	0.000	0.000	0.000	0.000			
GIR	0.000	0.000	0.000	0.000	0.000	0.000			
EGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
OGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
APGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
MSM	1.000	1.000	1.000	1.000	1.000	1.000			
WISIW	1.000	1.000	1.000 It.	1.000	1.000	1.000			
CAPCH	0.000	0.000	0.000	0.000	0.000	0.000			
CIP	0.000	0.000	0.000	0.000	0.000	0.000			
GJK	0.000	0.000	0.000	0.000	0.000	0.000			
OCARCH	0.000	0.000	0.000	0.000	0.000	0.000			
ADCADCII	0.000	0.000	0.000	0.000	0.000	0.000			
MEM	1.000	1.000	1.000	1.000	1.000	1.000			
MSM	1.000	1.000	1.000	1.000	1.000	1.000			
CADCII	Canada								
GARCH	0.000	0.000	0.000	0.000	0.000	0.000			
GJK	0.000	0.000	0.000	0.000	0.000	0.000			
EGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
QGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
APGARCH	0.000	0.000	0.000	0.000	0.000	0.000			
MSM	1.000	1.000	1.000	1.000	1.000	1.000			
	Japan								
GARCH	0.115	0.174	0.101	0.148	0.179	0.217			
GJR	0.006	0.007	0.004	0.004	0.006	0.008			
EGARCH	0.395	0.437	0.390	0.443	0.450	0.441			
QGARCH	0.041	0.046	0.022	0.016	0.020	0.014			
APGARCH	0.931	0.935	0.936	0.935	0.934	0.931			
MSM	0.229	0.243	0.239	0.244	0.252	0.257			

Table 14: Superior Predictive Ability (SPA) test, absolute error loss, mean process: STARFI

Note: The displayed numbers are the *p*-values of the SPA test of Hansen (2005) using the absolute error loss. We test the null hypothesis that a benchmark model outperforms the other candidate models. The *p*-values are obtained for the following out-of-sample periods: November 2009 – November 2015 for Canada and Japan; December 2009 –December 2015 for the US, UK, France, Germany and Italy. The inflation-rate mean process is STARFI.

			Forecasting horizons						
Model 1	Model 2	1M	2M	3M	4M	5M	6M		
		US							
GARCH	MSM	0.030	0.094	0.096	0.081	0.149	0.210		
GJR		0.023	0.081	0.086	0.070	0.119	0.163		
EGARCH		0.068	0.167	0.158	0.096	0.186	0.319		
QGARCH		0.040	0.112	0.105	0.064	0.134	0.215		
APGARCH		0.024	0.081	0.076	0.078	0.134	0.173		
		UK							
GARCH	MSM	0.093	0.056	0.045	0.069	0.073	0.086		
GJR		0.001	0.072	0.118	0.136	0.152	0.161		
EGARCH		0.015	0.057	0.088	0.147	0.183	0.170		
QGARCH		0.277	0.306	0.153	0.233	0.264	0.262		
APGARCH		0.099	0.077	0.081	0.130	0.155	0.187		
				Fra	nce				
GARCH	MSM	0.003	0.006	0.008	0.018	0.004	0.003		
GJR		0.005	0.005	0.003	0.004	0.000	0.000		
EGARCH		0.000	0.000	0.000	0.000	0.000	0.000		
QGARCH		0.553	0.610	0.634	0.674	0.650	0.690		
APGARCH		0.587	0.600	0.493	0.587	0.493	0.554		
		Germany							
GARCH	MSM	0.970	0.981	0.963	0.968	0.953	0.934		
GJR		0.651	0.700	0.771	0.866	0.864	0.823		
EGARCH		0.212	0.371	0.500	0.573	0.674	0.389		
QGARCH		0.245	0.357	0.577	0.727	0.740	0.706		
APGARCH		0.265	0.301	0.038	0.098	0.115	0.044		
		Italy							
GARCH	MSM	0.976	0.983	0.984	0.989	0.987	0.988		
GJR		0.960	0.981	0.981	0.980	0.976	0.980		
EGARCH		0.899	0.964	0.965	0.957	0.955	0.968		
QGARCH		0.920	0.967	0.965	0.960	0.953	0.970		
APGARCH		0.988	0.973	0.966	0.973	0.977	0.985		
		Canada							
GARCH	MSM	0.994	0.966	0.971	0.970	0.969	0.995		
GJR		0.994	0.935	0.951	0.878	0.876	0.902		
EGARCH		0.775	0.783	0.779	0.792	0.693	0.714		
QGARCH		0.995	0.958	0.974	0.947	0.974	0.996		
APGARCH		0.993	0.886	0.703	0.907	0.855	0.983		
	Japan								
GARCH	MSM	0.931	0.833	0.766	0.741	0.677	0.813		
GJR		0.696	0.637	0.649	0.684	0.716	0.935		
EGARCH		0.980	0.986	0.972	0.989	0.959	0.988		
QGARCH		0.954	0.949	0.905	0.945	0.881	0.944		
APGARCH		0 997	0 994	0 964	0 947	0 897	0.969		

Table 15: Equal Predictive Ability (EPA) test, squared error loss, mean process: STARFI

Note: The displayed number are p-values of the EPA test of Diebold and Mariano (1995) using the squared error loss. We test the null hypothesis that the forecasts at horizon h of Model 1 are equal to those of Model 2 against the one-sided alternative that forecasts of Model 1 are inferior to those of Model 2. The p-values are obtained for the following out-of-sample periods: November 2009 – November 2015 for Canada and Japan; December 2009 – December 2015 for the US, UK, France, Germany and Italy. The inflation-rate mean process is STARFI.

		Forecasting horizons						
Model 1	Model 2	1M	2M	3M	4M	5M	6M	
		US						
GARCH	MSM	0.000	0.000	0.000	0.000	0.000	0.000	
GJR		0.000	0.000	0.000	0.000	0.000	0.000	
EGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
QGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
APGARCH		0.000	0.000	0.000	0.000	0.000	0.001	
		UK						
GARCH	MSM	0.000	0.000	0.000	0.000	0.000	0.000	
GJR		0.000	0.000	0.000	0.000	0.000	0.000	
EGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
QGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
APGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
				Fra	nce			
GARCH	MSM	0.000	0.000	0.000	0.000	0.000	0.000	
GJR		0.000	0.000	0.000	0.000	0.000	0.000	
EGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
QGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
APGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
				Gerr	nany			
GARCH	MSM	0.000	0.000	0.000	0.000	0.000	0.000	
GJR		0.000	0.000	0.000	0.000	0.000	0.000	
EGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
QGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
APGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
		Italy						
GARCH	MSM	0.000	0.000	0.000	0.000	0.000	0.000	
GJR		0.000	0.000	0.000	0.000	0.000	0.000	
EGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
QGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
APGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
		Canada						
GARCH	MSM	0.000	0.000	0.000	0.000	0.000	0.000	
GJR		0.000	0.000	0.000	0.000	0.000	0.000	
EGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
QGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
APGARCH		0.000	0.000	0.000	0.000	0.000	0.000	
	Japan							
GARCH	MSM	0.738	0.738	0.736	0.742	0.746	0.759	
GJR		0.684	0.679	0.680	0.684	0.692	0.711	
EGARCH		0.754	0.752	0.761	0.769	0.779	0.795	
QGARCH		0.719	0.714	0.711	0.713	0.717	0.726	
APGARCH		0.775	0.769	0.779	0.781	0.787	0.794	

Table 16: Equal Predictive Ability (EPA) test, absolute error loss, mean-process: STARFI

Note: The displayed number are p-values of the EPA test of Diebold and Mariano (1995) using the absolute error loss. We test the null hypothesis that the forecasts at horizon h of Model 1 are equal to those of Model 2 against the one-sided alternative that forecasts of Model 1 are inferior to those of Model 2. The p-values are obtained for the following out-of-sample periods: November 2009 – November 2015 for Canada and Japan,; December 2009 – December 2015 for the US, UK, France, Germany and Italy. The inflation-rate mean process is STARFI.

Figure 1: CPI-based inflation rates for the G7 countries.